×

General Nörlund transforms and power series methods. (English) Zbl 0791.40004

Together with general power series methods \((P)\) generated by positive sequences \((p_ n)\) the general Nörlund transforms \((N,p^{*\alpha},p)\), \(\alpha \in \mathbb{N}\) are considered. Here \[ p^{*1}_ n=p_ n,\;p_ n^{*(\alpha+1)}=\sum^ n_{k=0} p^{*\alpha}_{n-k} p_ k \] and we say for a sequence \((s_ n)\), that \(s_ n \to s(N,p^{*\alpha},p)\), if \[ {1 \over p^{*(\alpha+1)}_ n} \sum^ n_{k=0} p^{*\alpha}_{n-k} p_ ks_ k \to s,\;(n \to \infty). \] These methods generalize the well known pairs Cesàro-Abel and Euler-Borel. The inclusions \((N,p^{*\alpha},p) \subseteq (N,p^{*\beta},p) \subseteq (P)\), \(\alpha \leq \beta\), \(\alpha,\beta \in \mathbb{N}\) are established, as well as the tauberian implication under the condition \(s_ n={\mathbf O} (1)\). Furthermore Cesàro convergence with speed is related to \((N,p^{*\alpha},p)\)-convergence generalizing the well known Cesàro to Euler case.
Reviewer: R.Kiesel (Ulm)

MSC:

40G10 Abel, Borel and power series methods
40G05 Cesàro, Euler, Nörlund and Hausdorff methods
40E05 Tauberian theorems
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Bingham, N.H.: On Borel and Euler summability. J. Lond. Math. Soc., II. Ser.29, 141–146 (1984) · Zbl 0528.40006 · doi:10.1112/jlms/s2-29.1.141
[2] Bingham, N.H., Goldie, C.M.: On one-sided Taberian conditions. Analysis3, 159–188 (1983) · Zbl 0497.40003
[3] Bingham, N.H., Goldie, C.M.: Riesz Means and Self-Neglecting Functions. Math. Z.199, 443–454 (1988) · Zbl 0631.60038 · doi:10.1007/BF01159790
[4] Bingham, N.H., Goldie, C.M., Teugels, J.L.: Regular Variation. (Encycl. Math. Appl., vol.27) Cambridge: Cambridge University Press 1987 · Zbl 0617.26001
[5] Bingham, N.H., Tenenbaum, G.: Riesz and Valiron means and fractional moments. Math. Proc. Camb. Philos. Soc.99, 143–149 (1986) · Zbl 0585.40006 · doi:10.1017/S0305004100064033
[6] Browein, D.: On Products of sequences. J. Lond. Math. Soc.33, 352–357 (1958) · Zbl 0081.28003 · doi:10.1112/jlms/s1-33.3.352
[7] Borwein, D.: Matrix Transformations of weakly multiplicative sequences of random variables. J. Lond. Math. Soc., II. Ser.23, 363–371 (1981) · Zbl 0465.40006 · doi:10.1112/jlms/s2-23.2.363
[8] Borwein, D., Kratz, W.: AnO-Tauberian theorem and a High Indices theorem for the power series methods of summability (submitted for publication) · Zbl 0808.40004
[9] Boos, J., Tietz, H.: Convexity theorems for the Circle methods of summability. J. Comp. Appl. Math.40, 151–155 (1992) · Zbl 0762.40005 · doi:10.1016/0377-0427(92)90102-4
[10] Das, G.: On some methods of summability. Q. J. Math., Oxf., II. Ser.17, 244–256 (1966) · Zbl 0145.29002 · doi:10.1093/qmath/17.1.244
[11] Das, G.: On some methods of summability II. Q. J. Math., Oxf., II. Ser.19, 417–431 (1968) · Zbl 0194.08802 · doi:10.1093/qmath/19.1.417
[12] Gaier, D.: Gap Theorems for Logarithmic Summability. Analysis1, 9–24 (1981) · Zbl 0485.40008
[13] Hardy, G.H.: Divergent Series. Oxford University Press 1949 · Zbl 0032.05801
[14] Jakimovski, A., Tietz, H.: Regularly varying functions and Power Series methods. J. Math. Anal. Appl.73, 65–84 (1980); Errata ibid.95, 597–598 (1983) · Zbl 0435.40009 · doi:10.1016/0022-247X(80)90022-0
[15] Jurkart, W.B.: Ein funktionentheoretischer Beweis fürO-Taubersätze bei Potenzreihen. Arch. Math.7, 122–125 (1956) · Zbl 0070.07002 · doi:10.1007/BF01899566
[16] Jurkart, W.B.: Ein funktionentheoretischer Beweis fürO-Taubersätze bei den Verfahren von Borel und Euler-Knopp. Arch. Math.7, 278–283 (1956) · Zbl 0072.28203 · doi:10.1007/BF01900304
[17] Kiesel, R.: Power series methods and almost sure Convergence. Math. Proc. Camb. Philos. Soc.113, 195–204 (1993) · Zbl 0787.60038 · doi:10.1017/S0305004100075885
[18] Kiesel, R., Stadtmüller, U.: Tauberian theorems for general power series methods. Math. Proc. Camb. Philos. Soc.110, 483–490 (1991) · Zbl 0748.40005 · doi:10.1017/S0305004100070560
[19] Kratz, W., Stadtmüller, U.:O-Tauberian Theorems for (J p)-methods with rapidly increasing weights. J. London. Math. Soc., II. Ser.41, 489–502 (1990) · Zbl 0666.40004 · doi:10.1112/jlms/s2-41.3.489
[20] Kratz, W., Stadtmüller, U.: Tauberian Theorems for Borel-type methods of summability. Arch. Math.55, 465–474 (1990) · Zbl 0681.40006 · doi:10.1007/BF01190268
[21] Meyer-König, W.: Untersuchungen über einige verwandte Limitierungsverfahren. Math. Z.52, 257–304 (1949) · Zbl 0041.18403 · doi:10.1007/BF02230694
[22] Moh, T.T.: On a General Tauberian theorem. Proc. Am. Math. Soc.36, 167–172 (1972) · Zbl 0254.40014 · doi:10.1090/S0002-9939-1972-0316935-7
[23] Peyerimhoff, A.: Lectures on Summability. (Lect. Notes Math., vol. 107) Berlin Heidelberg New York: Springer 1969 · Zbl 0182.08401
[24] Tietz, H., Trautner, R.: Taubersätze für Potenzreihen, Arch. Math.50, 164–174 (1988) · Zbl 0656.40008 · doi:10.1007/BF01194575
[25] Zeller, K., Beekmann, W.: Theorie der Limitierungsverfahren. (Ergeb. Math. Grenzgeb., vol. 15) Berlin Heidelberg New York: Springer 1970 · Zbl 0199.11301
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.