×

The number of real quadratic fields having units of negative norm. (English) Zbl 0792.11041

The author considers the density of discriminants of quadratic fields where \(N(\alpha)=-1\) is solvable (negative Pell equation) over those fields where \(N(\alpha/\beta) =-1\) is solvable, \(\alpha,\beta\in {\mathcal O}\) (discriminants not divisible by “bad” primes \(\equiv -1\bmod 4\)). The density is conjectured to be \(.580577\cdots =1- \prod (1-1/2^ j)\), (odd \(j>0\)). Experimental evidence for the density is higher because, practically, the number of factors in the discriminant is small. The answer is based on the density of the maximum-rank Redei matrices of relative residues of the discriminant divisors, assuming uniform distribution of residuacity.
Reviewer: H.Cohn (New York)

MSC:

11R11 Quadratic extensions
11R29 Class numbers, class groups, discriminants
11D09 Quadratic and bilinear Diophantine equations

Online Encyclopedia of Integer Sequences:

Decimal expansion of the Pell constant.

References:

[1] Beach, B. D. and Williams, H. C. ”A numerical investigation of the Diophantine equation x2–dy2= –1”. Proc. Southeastern Conf. on Combinatorics, Graph Theory and Computing. pp.37–52. [Beach and Williams 1972]
[2] Borevich Z. I., Number theory (1966)
[3] Bosma W., ”Density computations real quadratic class groups” · Zbl 1071.11519
[4] Cohen H., Number Theory: Noordwijkerhout 1983 1086 pp 33– (1984) · doi:10.1007/BFb0099440
[5] Cremona J. E., J. London Math. Soc. 39 (2) pp 16– (1989) · Zbl 0678.10015 · doi:10.1112/jlms/s2-39.1.16
[6] Dirichlet P. G. L., Abh. K. Preuss. Akad. d. Wiss. pp 649– (1834)
[7] Gerth F., Inv. Math. 77 pp 489– (1984) · Zbl 0533.12004 · doi:10.1007/BF01388835
[8] Hardy G. H., An Introduction to the Theory of Numbers,, 5. ed. (1979) · Zbl 0423.10001
[9] Hurrelbrink J., ”On the norm of the fundamental unit” (1990)
[10] Lagarias J. C., Trans. Amer. Math. Soc. 260 pp 485– (1980)
[11] MacWilliams J., Amer. Math. Monthly 76 pp 152– (1969) · Zbl 0186.33702 · doi:10.2307/2317262
[12] Morton P., J. reine angew. Math. 307 pp 373– (1979)
[13] Morton P., Studia Sci. Math. Hungar. 17 pp 21– (1982)
[14] Nagell T., Arkiv för Mat. Astr. Fysik 23 (6) pp 1– (1932)
[15] Perlis R. V., ”On the density of fields with N() = –1” (1990)
[16] Pumplün D., J. reine angew. Math. 230 pp 167– (1968)
[17] Réldei L., J. reine angew. Math. 170 pp 69– (1934)
[18] Rédei L., J. reine angew. Math. 171 pp 131– (1935)
[19] Rédei L., J. reine angew. Math. 173 pp 193– (1935)
[20] Rédei L., J. reine angew. Math. 174 pp 131– (1936)
[21] Rédei L., J. reine angew. Math. 180 pp 1– (1939)
[22] Rédei L., Acta Math. Hungar. 4 pp 1– (1953) · Zbl 0051.26902 · doi:10.1007/BF02020350
[23] Rédei L., Acta Math. Hungar. 4 pp 31– (1953) · Zbl 0051.27101 · doi:10.1007/BF02020351
[24] Rieger G. J., J. reine angew. Math. 217 pp 200– (1965)
[25] Scholz A., Math. Z. 39 pp 95– (1935) · Zbl 0009.29402 · doi:10.1007/BF01201346
[26] Stark H. M., An Introduction to Number Theory (1970) · Zbl 0198.06401
[27] Stevenhagen P., J. Number Theory 43 (1) pp 1– (1993) · Zbl 0767.11054 · doi:10.1006/jnth.1993.1001
[28] Stevenhagen P., ”Rédei matrices and applications” · doi:10.1017/CBO9780511661990.015
[29] Stevenhagen, P. ”A density conjecture for the negative Pell equation”. Proc. Conf. Algebra and Number Theory. Sydney. [Stevenhagen b], (to appear) · Zbl 0838.11066
[30] Trotter H. F., Proc. Amer. Math. Soc. 22 pp 198– (1969) · doi:10.1090/S0002-9939-1969-0244196-6
[31] von Thielmann M., Math. Ann. 95 pp 635– (1926) · JFM 52.0146.03 · doi:10.1007/BF01206630
[32] Weil A., Number Theory: An Approach through History (1984) · Zbl 0531.10001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.