×

On the asymptotic behaviour of the number of distinct factorizations into irreducibles. (English) Zbl 0792.11042

A commutative semigroup \(H\) with cancellation and a unit element is called an FF-monoid (finite factorization monoid), provided the number \(f(a)\) of essentially distinct (i.e. up to invertible factors and permutations) factorizations of any \(a\in H\) satisfies \(1\leq f(a)< \infty\). It is proved that if the number of essentially distinct irreducibles dividing some power of \(a\in H\) is finite then \(f(a^ n)= An^{r-1}+ O(n^{r-2})\) holds with a certain \(A>0\) and a suitable explicitly given \(r=r(a)\). This result has interesting applications to the study of the number of distinct factorizations in algebraic number fields.

MSC:

11R27 Units and factorization
11N37 Asymptotic results on arithmetic functions
20M14 Commutative semigroups
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Anderson, D. F. andPruis, P., Length functions on integral domains,Proc. Amer. Math. Soc. 113 (1991), 933–937. · Zbl 0738.13018 · doi:10.1090/S0002-9939-1991-1057742-1
[2] Clifford, A. H. andPreston, G. B.:The Algebraic Theory of Semigroups. Vol. II, Amer. Math. Soc. Providence, R. I., 1967.
[3] Comtet, L.,Advanced Combinatorics, D. Reidel, Dordrecht, 1974.
[4] Ehrhart, E., Sur un problème de géometrie diophantienne linéaire I,J. Reine Angew. Math. 226, (1967), 1–29. · Zbl 0155.37503 · doi:10.1515/crll.1967.226.1
[5] Geroldinger, A. andHalter-Koch, F., On the asymptotic behaviour of lengths of factorizations,J. Pure Appl. Algebra 77 (1992), 239–252. · Zbl 0751.20044 · doi:10.1016/0022-4049(92)90140-B
[6] Gilmer, R.,Commutative Semigroup Rings, Univ. of Chicago Press, Chicago, Ill., 1984.
[7] Halter-Koch, F., Ein Approximationssatz für Halbgruppen mit Divisorentheorie,Resultate Math. 19 (1991), 74–82. · Zbl 0742.20060
[8] Halter-Koch, F., Finiteness theorems for factorizations.Semigroup Forum 44 (1992), 112–117. · Zbl 0751.20046 · doi:10.1007/BF02574329
[9] Jacobson, N.,Basic Algebra I, Freeman, New York, 1974. · Zbl 0284.16001
[10] Lang, S.,Algebraic Number Theory, Addison-Wesley, Reading, Mass., 1970. · Zbl 0211.38404
[11] Narkiewicz, W.,Number Theory, World Scientific, Singapore, 1983. · Zbl 0528.10001
[12] Postnikov, A. G.,Introduction to Analytic Number Theory,Translations of Math. Monographs 68, Amer. Math. Soc., Providence, R.I., 1988.
[13] Smoke, W., Dimension and multiplicity for graded algebras,J. Algebra 21, (1972), 149–173. · Zbl 0231.13006 · doi:10.1016/0021-8693(72)90014-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.