zbMATH — the first resource for mathematics

Motion with a finite number of degrees of freedom with one-sided constraints: The case with loss of energy. (Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales: Cas avec perte d’énergie.) (French) Zbl 0792.34012
Let \(K\) be a closed convex subset of \(\mathbb{R}^ n\) with a nonempty interior and sufficiently smooth boundary \(\partial K\). Let \(f:[0,T] \times \mathbb{R}^ n \times \mathbb{R}^ n \to \mathbb{R}^ n\) be continuous and Lipschitzian with respect to the last two variables. The authors establish the existence of solutions to the problem \(\ddot u(t)+\partial \psi_ K(u) \ni f(t,u,\dot u)\), \(0 \leq t \leq T\), \(\dot u(t+0)=-e \dot u_ N(t-0)+\dot u_ T(t-0)\), for all \(t\) such that \(u(t) \in \partial K\). Here \(\psi_ K\) is the indicator function of \(K\), \(\partial \psi_ K\) stands for the subdifferential of \(\psi_ K\), \(e \in(0,1]\), and \(\dot u_ N\) (resp. \(\dot u_ T)\) denotes the normal (resp., tangential) component of \(\dot u\).

34A60 Ordinary differential inclusions
47J05 Equations involving nonlinear operators (general)
70F25 Nonholonomic systems related to the dynamics of a system of particles
Full Text: DOI EuDML
[1] M. BERGER, B. GOSTIAUX, Géométrie différentielle : variétés, courbes et surfaces, PUF, Paris, 1987. Zbl0619.53001 MR903026 · Zbl 0619.53001
[2] H. BREZIS, Analyse fonctionnelle, théorie et applications, Masson, Paris, 1987. Zbl0511.46001 MR697382 · Zbl 0511.46001
[3] H. BREZIS, Opérateurs maximaux monotones et semi-groupes de contraction dans les espaces de Hilbert, North Holland, Amsterdam, Londres, New York, 1973. Zbl0252.47055 MR348562 · Zbl 0252.47055
[4] E. A. CODDINGTON, N. LEVINSON, Theory of ordinary differential equations, McGraw-Hill, New York, Toronto, London, 1955. Zbl0064.33002 MR69338 · Zbl 0064.33002
[5] J. DIEUDONNÉ, Éléments d’analyse, Gauthier-Villars, Paris, 1969. Zbl0208.31802 · Zbl 0208.31802
[6] E. HEWITT, K. STROMBERG, Real and abstract analysis, Springer Verlag, Berlin, Heidelberg, New York, 1965. Zbl0137.03202 MR367121 · Zbl 0137.03202
[7] L. HÖRMANDER,, The analysis of linear partial differential operators I, Springer Verlag, Berlin, Heidelberg, New York, 1983. Zbl0521.35001 · Zbl 0521.35001
[8] L. PAOLI, Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales et sans perte d’énergie, Rapport interne de l’équipe d’analyse numérique Lyon-Saint-Étienne, 1991.
[9] R. T. ROCKAFELLAR, Intégrals which are convex functionnals, Pacifics J. of Math. 1968, 24, pp. 525-539. Zbl0159.43804 MR236689 · Zbl 0159.43804 · doi:10.2140/pjm.1968.24.525
[10] R. T. ROCKAFELLAR, Convex analysis, Princeton University Press, Princeton, 1970. Zbl0193.18401 MR274683 · Zbl 0193.18401
[11] R. T. ROCKAFELLAR, Integrals which are convex functionnals II, Pacific J. Math., 1971, 39, pp. 439-469. Zbl0236.46031 MR310612 · Zbl 0236.46031 · doi:10.2140/pjm.1971.39.439
[12] W. RUDIN, Analyse réelle et complexe, Masson, Paris, 1987. Zbl1147.26300 MR662565 · Zbl 1147.26300
[13] M. SCHATZMAN, A class of nonlinear differential equations of second order in time, Nonlinear Anal., Theory, Methods and Applications, 1978, 2, pp. 355-373. Zbl0382.34003 MR512664 · Zbl 0382.34003 · doi:10.1016/0362-546X(78)90022-6
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.