×

Time-mappings and multiplicity of solutions for the one-dimensional \(p\)- Laplacian. (English) Zbl 0792.34021

The paper is concerned with the quasilinear Dirichlet boundary value problem (P) \((\varphi_ p (u'))'+f(t,u)=0\), \(u(a)=u(b)=0\) where \(\varphi_ p:\mathbb{R} \to \mathbb{R}\) is defined by \(\varphi_ p(s)=| s |^{p-2}s\), \(p>1\), and \(f:[a,b] \times \mathbb{R}_ +\to \mathbb{R}\) is an \(L^ 1\)-Carathéodory function. The authors discuss the existence and multiplicity of positive solutions to (P). The methods used include the study of an associated time-mapping function, the use of the Leray- Schauder degree, and maximum principles.

MSC:

34B15 Nonlinear boundary value problems for ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Opial, Z., Sur les périodes des solutiones de l’équation différentielle \(x\)″ + \(g(x) = 0\), Annls pol. math., 10, 49-72 (1961) · Zbl 0096.29604
[2] Fernandes, M. L.C., On an elementary phase plane analysis for solving second order BVP’s, Rc. Mat., 37, 189-202 (1988) · Zbl 0711.34024
[3] Schaaf, R., Global solution branches of two point boundary value problems, Habilitationsschrift (1987), Ruprecht-Karls Universität: Ruprecht-Karls Universität Heidelberg
[4] Del Pino, M.; Elgueta, M.; Manásevich, R., A homotopic deformation along \(p\) of a Leray-Schauder degree result and existence for \((¦u′¦^{p−2}u′)′ + f(t, u) = 0, u(0) = u(T) = 0, p > 1\), J. diff. Eqns, 80, 1-13 (1989) · Zbl 0708.34019
[5] Fernandes, M. L.C.; Omari, P.; Zanolin, F., On the solvability of a semilinear two point BVP around the first eigenvalue, Diff. Integral Eqns, 2, 63-79 (1989) · Zbl 0715.34037
[6] Njoku, F. I.; Zanolin, F., Positive solutions for two-point bvp’s: existence and multiplicity results, Nonlinear Analysis, 13, 1329-1338 (1989) · Zbl 0704.34020
[7] Fonda, A.; Zanolin, F., On the use of the time-maps for the solvability of nonlinear boundary value problems, Arch. Math., 59, 245-259 (1992) · Zbl 0766.34012
[8] Schaaf, R.; Schmitt, K., A class of nonlinear Sturm-Liouville problems with infinitely many solutions, Trans. Am. math. Soc., 306, 853-859 (1986) · Zbl 0657.34021
[9] Del Pino, M., Sobre un problema cuasilineal de segundo orden, Applied Math. Engineering Thesis (1987), F.C.F.M. Universidad de Chile
[10] Hirsch, W. M.; Hanish, H.; Gabriel, J. P., Differential equation models of some parasitic infections: methods for the study of asymptotic behavior, Communs pure appl. Math., 38, 733-753 (1985) · Zbl 0637.92008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.