[1] |
Barenblatt, G. I.: Similarity, self-similarity, and intermediate asymptotics. (1979) · Zbl 0467.76005 |

[2] |
Bluman, G. W.; Cole, J. D.: Similarity methods for differential equations. (1974) · Zbl 0292.35001 |

[3] |
Bluman, G. W.; Kumei, S.: Symmetries and differential equations. (1989) · Zbl 0698.35001 |

[4] |
Hill, J. M.: Solution of differential equations by means of one-parameter groups. (1982) · Zbl 0497.34002 |

[5] |
Ibragimov, N. H.: Transformation groups applied to mathematical physics. (1985) · Zbl 0558.53040 |

[6] |
Olver, P. J.: Applications of Lie groups to differential equations. (1986) · Zbl 0588.22001 |

[7] |
Ovsiannikov, L. V.: Group properties of differential equations. (1962) · Zbl 0485.58002 |

[8] |
Ovsiannikov, L. V.: Group analysis of differential equations. (1982) · Zbl 0485.58002 |

[9] |
Rogers, C.; Ames, W. F.: Nonlinear boundary value problems in science and engineering. (1989) · Zbl 0686.35001 |

[10] |
Stephani, H.: Differential equations--their solution using symmetries. (1989) · Zbl 0704.34001 |

[11] |
Vinogradov, A. M.: Symmetries of partial differential equations. (1989) · Zbl 0692.35002 |

[12] |
Kumei, S.; Bluman, G. W.: When nonlinear differential equations are equivalent to linear differential equations. SIAM J. Appl. math. 42, 1157-1173 (1982) · Zbl 0506.35003 |

[13] |
Bluman, G. W.; Kumei, S.: Symmetry-based algorithms to relate partial differential equations: I. Local symmetries. Euro. J. Appl. math. 1, 189-216 (1990) · Zbl 0718.35003 |

[14] |
Bluman, G. W.; Kumei, S.: On invariance properties of the wave equation. J. math. Phys. 28, 307-318 (1987) · Zbl 0662.35065 |

[15] |
Bluman, G. W.; Kumei, S.; Reid, G. J.: New classes of symmetries for partial differential equations. J. math. Phys. 29, 2320 (1988) · Zbl 0684.58046 |

[16] |
Bluman, G. W.: Potential symmetries. Proceedings of the annual seminar of the canadian mathematical society on Lie theory, differential equations and representation theory, 85-100 (1990) · Zbl 0791.58114 |

[17] |
Bluman, G. W.; Kumei, S.: Symmetry-based algorithms to relate partial differential equations: II. Linearization by nonlocal symmetries. Euro. J. Appl. math 1, 217-223 (1990) · Zbl 0718.35004 |

[18] |
Head, A. K.: Lie: A mumath program for the calculation of the Lie algebra of differential equations. (1992) |

[19] |
Schwarz, F.: Automatically determining symmetries of partial differential equations. Computing 34, 91-106 (1985) · Zbl 0555.65076 |

[20] |
Wolf, T.; Brand, A.: The computer algebra package CRACK for investigating pdes. ERCIM advanced course on partial differential equations and group theory (1992) |

[21] |
Champagne, B.; Hereman, W.; Winternitz, P.: The computer calculation of Lie point symmetries of large systems of differential equations. Comp. phys. Comm. 66, 319-340 (1991) · Zbl 0875.65079 |

[22] |
Kersten, P. H. M.: Infinitesimal symmetries: A computational approach. (1987) · Zbl 0648.68052 |

[23] |
Reid, G. J.: Algorithms for reducing a system of pdes to standard form, determining the dimension of its solution space and calculating its Taylor series solution. Euro. J. Appl. math. 2, 293-318 (1991) · Zbl 0768.35001 |

[24] |
Reid, G. J.: Finding abstract Lie symmetry algebras of differential equations without integrating determining equations. Euro. J. Appl. math. 2, 319-340 (1991) · Zbl 0768.35002 |

[25] |
Topunov, V. L.: Reducing systems of linear differential equations to passive form. Acta applic. Math. 16, 191-206 (1989) · Zbl 0703.35005 |

[26] |
Lisle, I.: Equivalence transformations for classes of differential equations. Ph.d. thesis (1992) |

[27] |
Akhatov, I. S.; Gazizov, R. K.; Ibragimov, N. K.: Nonlocal symmetries. Heuristic approach. J. sov. Math, 1401-1450 (1991) · Zbl 0760.35002 |

[28] |
Noether, E.: Invariante variationsprobleme. Nachr. könig. Gesell. wissen. Göttingen. Math-phys., 235-257 (1918) |

[29] |
Anderson, R. L.; Kumei, S.; Wulfman, C. E.: Generalization of the concept of invariance of differential equations. Phys. rev. Lett. 28, 988-991 (1972) |

[30] |
Vinogradov, A. M.: Symmetries and conservation laws of partial differential equations: basic notions and results. Acta applic. Math. 15, 3-21 (1989) · Zbl 0692.35002 |

[31] |
Krasil’shchik, I. S.; Vinogradov, A. M.: Nonlocal symmetries and the theory of coverings: an addendum to A.M. Vinogradov’s local symmetries and conservation laws. Acta applic. Math. 2, 79-96 (1984) · Zbl 0547.58043 |

[32] |
Krasil’shchik, I. S.; Vinogradov, A. M.: Nonlocal trends in the geometry of differential equations: symmetries, conservation laws, and Bäcklund transformations. Acta applic. Math. 15, 161-209 (1989) · Zbl 0692.35003 |

[33] |
G.W. Bluman, Invariance of conserved forms under contact transformations, (Preprint) (1992) |