Triebel, Hans Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces. (English) Zbl 0792.46024 Proc. Lond. Math. Soc., III. Ser. 66, No. 3, 589-618 (1993). Let \(\Omega\) be a bounded \(C^ \infty\) domain in \(\mathbb{R}^ n\). The paper deals with the approximation numbers and entropy numbers of the compact embeddings of the limiting spaces \(H^{n/p}_ p(\Omega)\) and \(B^{n/p}_ p(\Omega)\) of Besov-Sobolev type into appropriate Orlicz spaces of Trudinger type. Reviewer: H.Triebel (Jena) Cited in 2 ReviewsCited in 19 Documents MSC: 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators 46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) Keywords:limiting spaces of Besov-Sobolev type; approximation numbers; entropy numbers; compact embeddings; Orlicz spaces of Trudinger type PDF BibTeX XML Cite \textit{H. Triebel}, Proc. Lond. Math. Soc. (3) 66, No. 3, 589--618 (1993; Zbl 0792.46024) Full Text: DOI