Approximation numbers and entropy numbers of embeddings of fractional Besov-Sobolev spaces in Orlicz spaces. (English) Zbl 0792.46024

Let \(\Omega\) be a bounded \(C^ \infty\) domain in \(\mathbb{R}^ n\). The paper deals with the approximation numbers and entropy numbers of the compact embeddings of the limiting spaces \(H^{n/p}_ p(\Omega)\) and \(B^{n/p}_ p(\Omega)\) of Besov-Sobolev type into appropriate Orlicz spaces of Trudinger type.
Reviewer: H.Triebel (Jena)


46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
47B06 Riesz operators; eigenvalue distributions; approximation numbers, \(s\)-numbers, Kolmogorov numbers, entropy numbers, etc. of operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI