×

Limiting behavior of the approximate second-order subdifferential of a convex function. (English) Zbl 0792.49015

Summary: J.-B. Hiriart-Urruty and the author [Proc. Lond. Math. Soc., III. Ser. 58, No. 2, 351-365 (1989; Zbl 0663.53006)] recently introduced the notions of Dupin indicatrices for nonsmooth convex surfaces and studied them in connection with their concept of a second-order subdifferential for convex functions. They noticed that second-order subdifferentials can be viewed as limit sets of difference quotients involving approximate subdifferentials. In this paper, we elaborate this point in a more detailed way and discuss some related questions.

MSC:

49J52 Nonsmooth analysis

Citations:

Zbl 0663.53006
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hiriart-Urruty, J. B., Strodiot, J. J., andNguyen, V. H.,Generalized Hessian Matrix and Second-Order Conditions for Problems with C 1,1 Data, Applied Mathematics and Optimization, Vol. 11, pp. 43-56, 1984. · Zbl 0542.49011
[2] Cominetti, R., andCorrea, R.,Sur une D?riv?e du Second Ordre en Analyse Non-Diff?rentiable, Comptes Rendus de l’Acad?mie des Sciences de Paris, Vol. 303, S?rie I, pp. 861-864, 1986.
[3] Cominetti, R., andCorrea, R.,A Generalized Second-Order Derivative in Nonsmooth Optimization, SIAM Journal on Control and Optimization, Vol. 28, pp. 789-809, 1990. · Zbl 0714.49020
[4] Haussmann, U. G.,A Probabilistic Approach to the Generalized Hessian, Preprint, Department of Mathematics, University of British Columbia, 1989. · Zbl 0777.49017
[5] Ponstein, J.,On Generalized Higher-Order Derivatives, Preprint, Institute of Economics, University of Gr?ningen, 1985. · Zbl 0569.00010
[6] Bedelbaev, A. A.,Necessary and Sufficient Second-Order Optimality Conditions in the Discrete Bolza Problem of Optimal Control, Izvestiia Akademiia Nauk Kazakhskoi SSR, Seriia Fiziko-Matematicheskaia, No. 1, pp. 5-11, 1980 (in Russian).
[7] Hiriart-Urruty, J. B.,A New Set-Valued Second-Order Derivative for Convex Functions, Mathematics for Optimization, Edited by J. B. Hiriart-Urruty, North-Holland, Amsterdam, Holland, pp. 157-182, 1986. · Zbl 0619.26009
[8] Seeger, A.,Analyse du Second Ordre de Probl?mes Non-Diff?rentiables, PhD Thesis, Laboratoire d’Analyse Num?rique, Universit? Paul Sabatier, Toulouse, 1986.
[9] Aubin, J. P.,Comportement Lipschitzien des Solutions de Probl?mes de Minimisation Convexes, Comptes Rendus de l’Acad?mie des Sciences de Paris, Vol. 295, S?rie I, pp. 235-238, 1982. · Zbl 0503.49022
[10] Aubin, J. P.,Lipschitz Behavior of Solutions to Convex Minimization Problems, Mathematics of Operations Research, Vol. 9, pp. 87-111, 1984. · Zbl 0539.90085
[11] Aubin, J. P., andEkeland, I.,Applied Nonlinear Analysis, J. Wiley and Sons, New York, New York, 1984. · Zbl 0641.47066
[12] Rockafellar, R. T.,Generalized Second Derivatives of Convex Functions and Saddle Functions, Transactions of the American Mathematical Society, Vol. 322, pp. 51-77, 1991. · Zbl 0712.49011
[13] Rockafellar, R. T.,Convex Analysis, Princeton University Press, Princeton, New Jersey, 1970. · Zbl 0193.18401
[14] Lemar?chal, C.,Constructing Bundle Methods for Convex Optimization, Mathematics for Optimization, Edited by J. B. Hiriart-Urruty, North-Holland, Amsterdam, Holland, pp. 201-240, 1986.
[15] Zowe, J.,Nodifferentiable Optimization?A Motivation and a Short Introduction into the Subgradient and the Bundle Concept, Computational Mathematical Programming, Edited by K. Schittkowski, Springer-Verlag, Berlin, Germany, 1985.
[16] Hiriart-Urruty, J. B.,Limiting Behavior of the Approximate First-Order and Second-Order Directional Derivatives for a Convex Function, Nonlinear Analysis: Theory, Methods, and Applications, Vol. 6, pp. 1309-1326, 1982. · Zbl 0536.26007
[17] Hiriart-Urruty, J. B.,Approximating a Second-Order Directional Derivative for Nonsmooth Convex Functions, SIAM Journal on Control and Optimization, Vol. 20, pp. 783-807, 1982. · Zbl 0507.49021
[18] Hiriart-Urruty, J. B.,The Approximate First-Order and Second-Order Directional Derivatives for a Convex Function, Proceedings of the Conference on Mathematical Theories of Optimization, S. Margherita Ligure, Italy, 1981; Lecture Notes in Mathematics, Springer-Verlag, Berlin, Germany, Vol. 979, pp. 144-177, 1983.
[19] Hiriart-Urruty, J. B., andSeeger, A.,The Second-Order Subdifferential and the Dupin Indicatrices of a Non-Differentiable Convex Function, Proceedings of the London Mathematical Society, Vol. 58, pp. 351-365, 1989. · Zbl 0632.53009
[20] Lemar?chal, C., andZowe, J.,Some Remarks on the Construction of Higher-Order Algorithms in Convex Optimization, Applied Mathematics and Optimization, Vol. 10, pp. 51-68, 1983. · Zbl 0527.65042
[21] Attouch, H.,Variational Convergence for Functions and Operators, Pitman, London, England, 1984. · Zbl 0561.49012
[22] Rockafellar, R. T.,Maximal Monotone Relations and the Second-Derivatives of Nonsmooth Functions, Annales de l’Institut Henri Poincar?, Vol. 2, pp. 167-184, 1985. · Zbl 0581.49009
[23] Ndoutoume, J. L.,Calcul Diff?rentiel du Second Ordre, Publications AVAMAC, University of Perpignan, Perpignan, France, 1987.
[24] Do, C. H.,Second-Order Nonsmooth Analysis and Sensitivity in Optimization Problems Involving Convex Integral Functionals, PhD Thesis, Department of Mathematics, University of Washington, Seattle, 1989.
[25] Mosco, U.,On the Continuity of the Young-Fenchel Transform, Journal of Mathematical Analysis and Applications, Vol. 35, pp. 518-535, 1971. · Zbl 0253.46086
[26] Busemann, H.,Convex Surfaces, Interscience (John Wiley), New York, New York, 1958. · Zbl 0196.55101
[27] Schneider, R.,Boundary Structures and Curvatures of Convex Bodies, Proceedings of the Geometry Symposium, Siegen, Germany, 1978; Birkh?user, Basel, Switzerland, 1979.
[28] Hiriart-Urruty, J. B., andSeeger, A.,R?gles de Calcul sur le Sous-Diff?rentiel Second d’une Fonction Convexe, Comptes Rendus de l’Acad?mie des Sciences de Paris, Vol. 304, S?rie I, pp. 259-262, 1987.
[29] Hiriart-Urruty, J. B., andSeeger, A.,Calculus Rules on a New Set-Valued Second-Order Derivative for Convex Functions, Nonlinear Analysis: Theory, Methods, and Applications, Vol. 13, pp. 721-738, 1989. · Zbl 0705.26013
[30] Rockafellar, R. T.,First- and Second-Order Epi-Differentiability in Nonlinear Programming, Transactions of the American Mathematical Society, Vol. 307, pp. 75-108, 1988. · Zbl 0655.49010
[31] Rockafellar, R. T.,Second-Order Optimality Conditions in Nonlinear Programming Obtained by Way of Epi-Derivatives, Mathematics of Operations Research, Vol. 14, pp. 462-484, 1989. · Zbl 0698.90070
[32] Poliquin, R.,Proto-Differentiation and Integration of Proximal Subgradients, PhD Thesis, Department of Mathematics, University of Washington, Seattle, 1988.
[33] Poliquin, R.,Proto-Differentiation of Subgradient Set-Valued Mappings, Canadian Journal of Mathematics, Vol. 42, pp. 520-532, 1990. · Zbl 0706.49014
[34] Seeger, A.,Second Derivatives of a Convex Function and of Its Legendre-Fenchel Transformate, Preprint, Department of Mathematics, University of Washington, Seattle, 1989. · Zbl 0786.49013
[35] Seeger, A.,Compl?ment de Schur et Sous-Diff?rentiel du Second Ordre d’une Fonction Convexe, Aequationes Mathematicae, Vol. 42, pp. 47-71, 1991. · Zbl 0748.49013
[36] Hiriart-Urruty, J. B.,?-Subdifferential Calculus, Research Notes in Mathematics, Pitman, London, England, Vol. 57, pp. 43-92, 1982.
[37] Kutateladze, S. S.,Convex ?-Programming, Soviet Mathematics Doklady, Vol. 20, pp. 391-393, 1979. · Zbl 0425.49027
[38] Hiriart-Urruty, J. B.,From Convex Optimization to Nonconvex Optimization, Nonsmooth Optimization and Related Topics, Edited by F. H. Clarke, V. H. Demyanov, and F. Giannessi, Plenum Press, New York, New York, pp. 219-239, 1989. · Zbl 0735.90056
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.