×

Quantitative rectifiability and Lipschitz mappings. (English) Zbl 0792.49029

The authors give some new sufficient conditions for rectifiability (“qualitative rectifiability”) of sets \(E\) in \(\mathbb{R}^ n\) and obtain some interesting results about the connections of these with previously introduced sufficient conditions, called “quantitative rectifiability” by the authors. These sufficient conditions are so-called BPLG (the set \(E\) has ‘big pieces of Lipschitz graphs’) [see the first author, Ann. Sci. Ecole Norm. Super., IV. Ser. 17, 157-189 (1984; Zbl 0537.42016); ibid. 21, No. 2, 225-258 (1988; Zbl 0655.42013)], implying condition B [see the first author, Rev. Mat. Iberoam. 4, No. 1, 73-114 (1988; Zbl 0696.42011); the first author and D. Jerison, Indiana Univ. Math. J. 39, No. 3, 831-845 (1990; Zbl 0758.42008)].
The authors establish the following important results. If a set \(E\subset\mathbb{R}^ n\) is regular, has big projections, and satisfies the Weak Geometric Lemma, then \(E\) has BPLG. This theorem 1.14 allows the authors to give a simpler proof of David’s theorem about the fact that condition B follows from BPLG. If a set \(E\subset\mathbb{R}^ n\) satisfies Condition B, then \(H_ \varepsilon\) is a Carleson set for all \(\varepsilon> 0\) and \(E\) satisfies the Local Symmetry Condition; conversely, if \(E\) is regular, \(d= n- 1\) (Hausdorff dimension of \(E\)) and \(H_ \varepsilon'\) is a Carleson set for all \(\varepsilon>0\), then \(E\) satisfies Condition E. Remember that \(H_ \varepsilon\) (respectively, \(H_ \varepsilon'\)) is the set of all \((x,t)\in E\times R_ +\) for which there are \(y_ 1,y_ 2\in B(x,t)=\bigl\{u\in \mathbb{R}^ m: \| u- x\|\leq t\bigr\}\) such that \(\text{dist}(y_ i,E)\geq\varepsilon t\) \((i=1,2)\), \(y_ 1\) to \(y_ 2\) lie in the same component of \(\mathbb{R}^{d+1}\backslash E\), and the line segment joining \(y_ 1\) and \(y_ 2\) intersects \(E\) (respectively, \({1\over 2} (y_ 1+y_ 2)\in E\)). As is well-known, the above-mentioned quantitative conditions of rectifiability of \(E\) arise when studying estimates for singular integral operators on \(E\), namely \[ T_ * f(x)=\sup_{\varepsilon>0}\Bigl| \int_{E\backslash B(x,\varepsilon)} k(x- y)f(y) d\mu(x)\Bigr|. \] It should be noticed that all the results on these topics are presented in a monograph of the authors with the title ‘Analysis of and on uniformly rectifiable sets’ [Mathematical Surveys and Monographs 38, Providence, Amer. Math. Soc. (1993)].

MSC:

49Q15 Geometric measure and integration theory, integral and normal currents in optimization
42B20 Singular and oscillatory integrals (Calderón-Zygmund, etc.)
28A75 Length, area, volume, other geometric measure theory

Keywords:

rectifiability
Full Text: DOI

References:

[1] Guy David, Opérateurs intégraux singuliers sur certaines courbes du plan complexe, Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 157 – 189 (French). · Zbl 0537.42016
[2] Guy David, Opérateurs d’intégrale singulière sur les surfaces régulières, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 2, 225 – 258 (French). · Zbl 0655.42013
[3] Guy David, Morceaux de graphes lipschitziens et intégrales singulières sur une surface, Rev. Mat. Iberoamericana 4 (1988), no. 1, 73 – 114 (French). · Zbl 0696.42011 · doi:10.4171/RMI/64
[4] Guy David, Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, vol. 1465, Springer-Verlag, Berlin, 1991.
[5] G. David and D. Jerison, Lipschitz approximation to hypersurfaces, harmonic measure, and singular integrals, Indiana Univ. Math. J. 39 (1990), no. 3, 831 – 845. · Zbl 0758.42008 · doi:10.1512/iumj.1990.39.39040
[6] G. David and S. Semmes, Singular integrals and rectifiable sets in \( {{\mathbf{R}}^n}\): au-delà des graphes lipschitziens, Astérisque 193 (1991). · Zbl 0743.49018
[7] -, Analysis of and on uniformly rectifiable sets, manuscript, 1992.
[8] José R. Dorronsoro, A characterization of potential spaces, Proc. Amer. Math. Soc. 95 (1985), no. 1, 21 – 31. · Zbl 0577.46035
[9] Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York Inc., New York, 1969. · Zbl 0176.00801
[10] F. W. Gehring, The \?^{\?}-integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973), 265 – 277. · Zbl 0258.30021 · doi:10.1007/BF02392268
[11] Peter W. Jones, A geometric localization theorem, Adv. in Math. 46 (1982), no. 1, 71 – 79. , https://doi.org/10.1016/0001-8708(82)90054-8 David S. Jerison and Carlos E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains, Adv. in Math. 46 (1982), no. 1, 80 – 147. · Zbl 0514.31003 · doi:10.1016/0001-8708(82)90055-X
[12] Peter W. Jones, Square functions, Cauchy integrals, analytic capacity, and harmonic measure, Harmonic analysis and partial differential equations (El Escorial, 1987) Lecture Notes in Math., vol. 1384, Springer, Berlin, 1989, pp. 24 – 68. · doi:10.1007/BFb0086793
[13] Peter W. Jones, Lipschitz and bi-Lipschitz functions, Rev. Mat. Iberoamericana 4 (1988), no. 1, 115 – 121. · Zbl 0782.26007 · doi:10.4171/RMI/65
[14] Peter W. Jones, Rectifiable sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1 – 15. · Zbl 0731.30018 · doi:10.1007/BF01233418
[15] Pertti Mattila, Lecture notes on geometric measure theory, Publicaciones del Departamento de Matemáticas, Universidad de Extremadura [Publications of the Mathematics Department of the University of Extremadura], vol. 14, Universidad de Extremadura, Facultad de Ciencias, Departamento de Matemáticas, Badajoz, 1986. · Zbl 0638.28006
[16] Takafumi Murai, A real variable method for the Cauchy transform, and analytic capacity, Lecture Notes in Mathematics, vol. 1307, Springer-Verlag, Berlin, 1988. · Zbl 0645.30016
[17] Stephen W. Semmes, A criterion for the boundedness of singular integrals on hypersurfaces, Trans. Amer. Math. Soc. 311 (1989), no. 2, 501 – 513. · Zbl 0675.42015
[18] Stephen Semmes, Chord-arc surfaces with small constant. I, Adv. Math. 85 (1991), no. 2, 198 – 223. , https://doi.org/10.1016/0001-8708(91)90056-D Stephen Semmes, Chord-arc surfaces with small constant. II. Good parameterizations, Adv. Math. 88 (1991), no. 2, 170 – 199. · Zbl 0733.42016 · doi:10.1016/0001-8708(91)90007-T
[19] Stephen Semmes, Differentiable function theory on hypersurfaces in \?\(^{n}\) (without bounds on their smoothness), Indiana Univ. Math. J. 39 (1990), no. 4, 985 – 1004. · Zbl 0796.42013 · doi:10.1512/iumj.1990.39.39047
[20] Stephen Semmes, Analysis vs. geometry on a class of rectifiable hypersurfaces in \?\(^{n}\), Indiana Univ. Math. J. 39 (1990), no. 4, 1005 – 1035. · Zbl 0796.42014 · doi:10.1512/iumj.1990.39.39048
[21] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. · Zbl 0207.13501
[22] J. Väisälä, Invariants for quasisymmetric, quasimöbius, and bilipschitz maps, J. Analyse Math. 50 (1988), 201-233. · Zbl 0682.30014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.