×

zbMATH — the first resource for mathematics

Numerical simulation of tridimensional electromagnetic shaping of liquid metals. (English) Zbl 0792.65096
Summary: We describe a numerical method to compute free surfaces in electro- magnetic shaping and levitation of liquid metals. We use an energetic variational formulation and optimization techniques to compute a critical point. The surfaces are represented by piecewise linear finite elements. Each step of the algorithm requires solving an elliptic boundary value problem in the exterior of the intermediate surfaces. This is done by using an integral representation on these surfaces.

MSC:
65Z05 Applications to the sciences
65N38 Boundary element methods for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
78A25 Electromagnetic theory, general
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Atkinson, K.E. (1990): A survey of boundary integral equations methods for the numerical solution of Laplace’s equation in three dimensions. In: M.A. Golberg ed., Math. Concepts Methods Sci. Eng.42, pp. 1-34 Plenum Press · Zbl 0737.65085
[2] Brancher, J.-P., Etay, J., Sero-Guillaume, O. (1983): Formage d’une lame. J. de Mécanique Théorique et Appliquée.2 (6) 976-989 · Zbl 0564.76119
[3] Brancher, J.-P., Sero-Guillaume, O. (1983): Sur l’équilibre des liquides magnétiques, applications à la magnétostatique. J de Mécanique Théorique et Appliquée.2 (2) 265-283 · Zbl 0539.76119
[4] Coulaud, O., Henrot, A. (1991): A nonlinear boundary value problem solved by spectral methods. Appl. Anal.43, 229-244 · Zbl 0736.35042 · doi:10.1080/00036819208840062
[5] Coulaud, O., Henrot, A. (1993): Numerical approximation of a free boundary problem arising in electromagnetic shaping 237-303 (to appear) · Zbl 0804.65129
[6] Dautray, R., Lions, J.-L. (1988): Analyse mathématique et calcul numérique pour les Sciences et les Techniques.5 (6)
[7] Dennis J.E., JR., More, J.J. (1977): Quasi-Newton method motivation and theory. SIAM Review19 (1) 46-89 · Zbl 0356.65041 · doi:10.1137/1019005
[8] Dennis J.E., JR., Schnabel, R.B. (1983): Numerical methods for unconstrained optimization and nonlinear equations. Prentice-Hall, Englewood Cliffs, NJ · Zbl 0579.65058
[9] Descloux, J. (1990): On the two dimensional magnetic shaping problem without surface tension. Report no 07.90, Ecole Polytechnique Fédérale de Lausanne, Suisse
[10] Etay, J. (1982): Le formage électromagnétique des métaux liquides. Aspects expérimentaux et théoriques. Thèse Docteur-Ingénieur. U.S.M.G., I.N.P.G. Grenoble, France
[11] Etay, J., Mestel, A.J., Moffatt, H.K. (1988): Deflection of a stream of liquid metal by means of an alternating magnetic field. J. Fluid Mech.194, 309-331 · Zbl 0645.76121 · doi:10.1017/S0022112088003003
[12] Gagnoud, A., Brancher, J.-P. (1985): Proceedings of the Conference of Computation of Electromagnetic Fields. Fort Collins, USA
[13] Gagnoud, A., Etay, J., Garnier, M. (1986): Le problème de frontière libre en lévitation électromagnétique. J. de Mécanique Théorique et Appliquée,5 (6) 911-925 · Zbl 0615.76111
[14] Gagnoud, A., Sero-Guillaume, O. (1986): Le creuset froid de lévitation: modélisation électromagnétique et application. E.D.F. Bull. Etudes et Recherches, Série B,1, 41-51
[15] Gilbert, J.-Ch., Lemarechal, C. (1988): Some numerical experiments with variable storage Quasi-Newton algorithms. HASA Working Paper WP,88 (121) p. 2361. Laxenburg, Austria
[16] Grisvard, P. (1985): Elliptic problems in non smooth domains. Monogr. Stud. Math.24 · Zbl 0695.35060
[17] Henrot, A., Pierre, M. (1989): Un problème inverse en formage de métaux liquides. M2AN23, 155-177 · Zbl 0672.65101
[18] Hornung, U., Mittelmann, H.D. (1988): The augmented skeleton method for parametrized surfaces of liquid drops. Technical Report No113. Arizona State University, Tempe, AZ
[19] Johnson, C.G.L., Scott, L.R. (1989): An analysis of quadrature errors in second-kind boundary integral methods. Siam J. Numer. Anal.26 (6) 1356-1382 · Zbl 0695.65067 · doi:10.1137/0726079
[20] Li, B.Q., Evans, J.W. (1989): Computation of shapes of electromagnetically supported menisci in electromagnetic casters. Part. I: Calculations in the two dimensions. IEEE Trans. Magnetics.25 (6) 4442
[21] Mestel, A.J. (1982): Magnetic levitation of liquid metals. J. Fluid Mech.117, 27-43 · Zbl 0495.76097 · doi:10.1017/S0022112082001505
[22] Minoux, M. (1983): Programmation mathématique; théorie et algorithmes, tome 1. Dunod, Paris · Zbl 0546.90056
[23] Nédelec, J.C. (1977): Approximation des équations intégrales en mécanique et en physique. Rapport, Centre de Mathématiques Appliquées, Ecole Polytechnique, Palaiseau, France
[24] Oren, S.S., Spedicato, E. (1976): Optimal conditioning of self-scaling variable metric algorithms. Math. Program.10, 70-90 · Zbl 0342.90045 · doi:10.1007/BF01580654
[25] Pierre, M., Roche, J.-R. (1991): Numerical computation of free boundaries in 2-d electromagnetic shaping. Eur. J. Mech., B10 (5) 489-500 · Zbl 0741.76095
[26] Sero-Guillaume, O. (1983): Sur l’équilibre des ferrofluides et des métaux liquides Thèse, Institut Polytechnique de Lorraine, Nancy, France · Zbl 0539.76119
[27] Simon, J. (1988): Second variations for domain optimization problems. Control of distributed parameter systems. Proceedings 4th International Conference in Vorau, Birkhauser. Basel
[28] Sneyd, A.D., Moffatt, H.K. (1982): Fluid dynamical aspects of the levitation melting process. J. of Fluid Mech.117, 45-70 · Zbl 0494.76111 · doi:10.1017/S0022112082001517
[29] Zolésio, J.P. (1981): The Material derivative (or speed) method for shape optimization. In: J. Cea, E.J., Hand, eds., Optimization of Distributed Parameter Structures vol. II. pp. 1089-1151. Sijhoff and Nordhoff, Alphen aan den Rijn
[30] Zolésio, J.P. (1984): Numerical algorithm and existence result for a Bernoulli-like problem steady free boundary problem. Large Scale Syst.6 (3) 263-278 · Zbl 0552.49027
[31] Zolésio, J.P. (1990): Introduction to shape optimisation problems and free boundary problems. Séminaire de Mathématiques Supérieures. Université de Montréal, Montréal, Canada
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.