×

Silting complexes of coherent sheaves and the Humphreys conjecture. (English) Zbl 07928013

Let \( \mathbf{G} \) be a connected reductive group over an algebraically closed field \( \Bbbk \) of characteristic \(p\). Assume that \(p\) is greater than the Coxeter number for \( \mathbf{G} \). Let \( \mathbf{G}_{1} \) be its first Frobenius kernel and let \( G = \mathbf{G} / \mathbf{G}_{1} \) be its Frobenius twist. Let \( \mathcal{N} \) be the nilpotent variety in the Lie algebra of \(G\). Then the algebra \( \mathrm{Ext}_{ \mathbf{G}_{1} }^{\bullet} ( \Bbbk , \Bbbk ) \) is (\(G\)-equivariantly) isomorphic to the coordinate ring \( \Bbbk [ \mathcal{N} ] \) and for any \( \mathbf{G} \)-module \(M\), the \( \mathbf{G}_{1} \)-cohomology \( H^{\bullet} ( \mathbf{G}_{1}, M ) = \mathrm{Ext}_{ \mathbf{G}_{1} }^{\bullet} ( \Bbbk , M ) \) has the structure of a \(G\)-equivariant graded \( \Bbbk [ \mathcal{N} ] \)-module, or equivalently, a \( G\times \mathbb{G}_{m} \)-equivariant (quasi-)coherent sheaf on \( \mathcal{N} \). The main goal of the paper under review is to give a new description of this cohomology in the case where \(M\) is an indecomposable tilting \( \mathbf{G} \)-module.
Let \( \mathbf{X} \) be the weight lattice of \(G\) and let \( \mathbf{X}^{+}\subset \mathbf{X} \) be the set of dominant weights. For \( \lambda\in \mathbf{X}^{+} \), let \( \mathsf{T} ( \lambda ) \) be the indecomposable tilting \( \mathbf{G} \)-module of highest weight \( \lambda \).
Let \(W\) be the Weyl group of \( \mathbf{G} \) and let \( W_{\mathrm{ext}} = W\ltimes \mathbf{X} \) be its extended affine Weyl group. For \( \lambda\in \mathbf{X} \), let \( t_{\lambda} \) denote the corresponding element of \( W_{\mathrm{ext}} \). For \( \lambda\in \mathbf{X}^{+} \), let \( w_{\lambda} \) be the unique element of minimal length in the double coset \( Wt_{\lambda}W\subset W_{\mathrm{ext}} \). The following action of the group \( W_{\mathrm{ext}} \) on \( \mathbf{X} \) is called the \(p\)-dilated dot action of \( W_{\mathrm{ext}} \) on \( \mathbf{X} \): for \( w = v\ltimes t_{\lambda}\in W_{\mathrm{ext}} \) and \( \mu\in \mathbf{X} \), \( w\cdot\mu \) is defined to be \( v( \mu + p\lambda + \rho ) - \rho \), where \( \rho \) is one-half the sum of the positive roots. According to Lemma 8.7 in [P. Achar et al., Transform. Groups, 24, No. 3, 597–657 (2019; Zbl 1475.20073))], \(H^{\bullet} ( \mathbf{G}_{1}, \mathsf{T} ( \mu ) ) = 0 \) unless \( \mu = w_{\lambda}\cdot 0 \) for some \( \lambda\in\mathbf{X}^{+} \). The main theorem of the article (Theorem 8.1) describes \( H^{\bullet} ( \mathbf{G}_{1}, \mathsf{T} ( \mu ) ) \) in the case where \( \mu = w_{\lambda}\cdot 0 \) for some \( \lambda\in\mathbf{X}^{+} \). It confirms a relative version of a conjecture due to J. E. Humphreys [AMS/IP Stud. Adv. Math. 4, 69–80 (1997; Zbl 0919.17013)] as well as part of a refinement of this conjecture proposed by the first authot et al. [“Conjectures on tilting modules and antispherical \(p\)-cells”, Preprint, arXiv:1812.09960].

MSC:

20G10 Cohomology theory for linear algebraic groups
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
20G15 Linear algebraic groups over arbitrary fields

References:

[1] P. ACHAR, “Perverse coherent sheaves on the nilpotent cone in good characteristic” in Recent Developments in Lie Algebras, Groups and Representation Theory, Proc. Sympos. Pure Math. 86, Amer. Math. Soc., Providence, 2012, 1-23. Digital Object Identifier: 10.1090/pspum/086/1409 Google Scholar: Lookup Link MathSciNet: MR2976995 · Zbl 1320.20040 · doi:10.1090/pspum/086/1409
[2] P. ACHAR, “On exotic and perverse-coherent sheaves” in Representations of Reductive Groups: In Honor of the 60th Birthday of David A. Vogan, Jr., Progr. Math. 312, Birkhäuser/Springer, Cham, 2015, 11-49. Digital Object Identifier: 10.1007/978-3-319-23443-4_2 Google Scholar: Lookup Link MathSciNet: MR3495792 · Zbl 1343.20047 · doi:10.1007/978-3-319-23443-4_2
[3] P. ACHAR and W. HARDESTY, Calculations with graded perverse-coherent sheaves, Q. J. Math. 70 (2019), no. 4, 1327-1352. Digital Object Identifier: 10.1093/qmath/haz016 Google Scholar: Lookup Link MathSciNet: MR4045103 · Zbl 1467.14048 · doi:10.1093/qmath/haz016
[4] P. ACHAR and W. HARDESTY, Co-t-structures on derived categories of coherent sheaves and the cohomology of tilting modules, Represent. Theory 28 (2024), 49-89. Digital Object Identifier: 10.1090/ert/655 Google Scholar: Lookup Link MathSciNet: MR4700051 · Zbl 1532.20048 · doi:10.1090/ert/655
[5] P. ACHAR and W. HARDESTY, Nilpotent centralizers and good filtrations, to appear in Transform. Groups. Digital Object Identifier: 10.1007/s00031-022-09707-x Google Scholar: Lookup Link · Zbl 07928069 · doi:10.1007/s00031-022-09707-x
[6] P. ACHAR, W. HARDESTY, and S. RICHE, On the Humphreys conjecture on support varieties of tilting modules, Transform. Groups 24 (2019), no. 3, 597-657. Digital Object Identifier: 10.1007/s00031-019-09513-y Google Scholar: Lookup Link MathSciNet: MR3989684 · Zbl 1475.20073 · doi:10.1007/s00031-019-09513-y
[7] P. ACHAR, W. HARDESTY, and S. RICHE, Representation theory of disconnected reductive groups, Doc. Math. 25 (2020), 2149-2177. MathSciNet: MR4198840 · Zbl 1508.20052
[8] P. ACHAR, W. HARDESTY, and S. RICHE, Integral exotic sheaves and the modular Lusztig-Vogan bijection, J. Lond. Math. Soc. (2) 106 (2022), no. 3, 2403-2458. Digital Object Identifier: 10.1112/jlms.12638 Google Scholar: Lookup Link MathSciNet: MR4498557 · Zbl 1521.20103 · doi:10.1112/jlms.12638
[9] P. ACHAR, W. HARDESTY, and S. RICHE, Conjectures on tilting modules and antispherical p-cells, preprint, arXiv:1812.09960 [math.RT].
[10] P. ACHAR, S. MAKISUMI, S. RICHE, and G. WILLIAMSON, Koszul duality for Kac-Moody groups and characters of tilting modules, J. Amer. Math. Soc. 32, no. 1, (2019), 261-310. Digital Object Identifier: 10.1090/jams/905 Google Scholar: Lookup Link MathSciNet: MR3868004 · Zbl 1450.20011 · doi:10.1090/jams/905
[11] P. ACHAR and S. RICHE, Reductive groups, the loop Grassmannian, and the Springer resolution, Invent. Math. 214 (2018), no. 1, 289-436. Digital Object Identifier: 10.1007/s00222-018-0805-1 Google Scholar: Lookup Link MathSciNet: MR3858401 · Zbl 1454.20095 · doi:10.1007/s00222-018-0805-1
[12] P. ACHAR and S. RICHE, Dualité de Koszul formelle et théorie des représentations des groupes algébriques réductifs en caractéristique positive, preprint, arXiv:1807.08690[math.RT]. MathSciNet: MR4508909
[13] H. H. ANDERSEN and J. C. JANTZEN, Cohomology of induced representations for algebraic groups, Math. Ann. 269 (1984), no. 4, 487-525. Digital Object Identifier: 10.1007/BF01450762 Google Scholar: Lookup Link MathSciNet: MR0766011 · Zbl 0529.20027 · doi:10.1007/BF01450762
[14] R. BEZRUKAVNIKOV, Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone, Represent. Theory 7 (2003), 1-18. Digital Object Identifier: 10.1090/S1088-4165-03-00158-4 Google Scholar: Lookup Link MathSciNet: MR1973365 · Zbl 1065.20055 · doi:10.1090/S1088-4165-03-00158-4
[15] R. BEZRUKAVNIKOV, Cohomology of tilting modules over quantum groups and t-structures on derived categories of coherent sheaves, Invent. Math. 166 (2006), no. 2, 327-357. Digital Object Identifier: 10.1007/s00222-006-0514-z Google Scholar: Lookup Link MathSciNet: MR2249802 · Zbl 1123.17002 · doi:10.1007/s00222-006-0514-z
[16] R. BEZRUKAVNIKOV, Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group, Israel J. Math. 170 (2009), 185-206. Digital Object Identifier: 10.1007/s11856-009-0025-x Google Scholar: Lookup Link MathSciNet: MR2506323 · Zbl 1214.14012 · doi:10.1007/s11856-009-0025-x
[17] E. FRIEDLANDER and B. PARSHALL, Cohomology of Lie algebras and algebraic groups, Amer. J. Math. 108 (1986), no. 1, 235-253. Digital Object Identifier: 10.2307/2374473 Google Scholar: Lookup Link MathSciNet: MR0821318 · Zbl 0601.20042 · doi:10.2307/2374473
[18] W. HARDESTY, On support varieties and the Humphreys conjecture in type A, Adv. Math. 329 (2018), 392-421. Digital Object Identifier: 10.1016/j.aim.2018.01.023 Google Scholar: Lookup Link MathSciNet: MR3783418 · Zbl 1393.14043 · doi:10.1016/j.aim.2018.01.023
[19] S. HERPEL, On the smoothness of centralizers in reductive groups, Trans. Amer. Math. Soc. 365 (2013), no. 7, 3753-3774. Digital Object Identifier: 10.1090/S0002-9947-2012-05745-X Google Scholar: Lookup Link MathSciNet: MR3042602 · Zbl 1298.20057 · doi:10.1090/S0002-9947-2012-05745-X
[20] J. E. HUMPHREYS, “Comparing modular representations of semisimple groups and their Lie algebras” in Modular Interfaces: Modular Lie Algebras, Quantum Groups, and Lie Superalgebras (Riverside, CA, 1995), AMS/IP Stud. Adv. Math. 4, Amer. Math. Soc., Providence, 1997, 69-80. Digital Object Identifier: 10.1090/amsip/004/05 Google Scholar: Lookup Link MathSciNet: MR1483904 · Zbl 0919.17013 · doi:10.1090/amsip/004/05
[21] J. C. JANTZEN, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs 107, Amer. Math. Soc., Providence, 2003. MathSciNet: MR2015057 · Zbl 1034.20041
[22] J. C. Jantzen, “Nilpotent orbits in representation theory” in Lie Theory, Progr. Math. 228, Birkhäuser, Boston, 2004, 1-211. MathSciNet: MR2042689 · Zbl 1169.14319
[23] L. T. JENSEN and G. WILLIAMSON, “The \(p\)-canonical basis for Hecke algebras” in Categorification and Higher Representation Theory, Contemp. Math. 683, Amer. Math. Soc., Providence, 2017, 333-361. Digital Object Identifier: 10.1090/conm/683 Google Scholar: Lookup Link MathSciNet: MR3611719 · doi:10.1090/conm/683
[24] P. JØRGENSEN, “\(Co-t\)-structures: the first decade” in Surveys in Representation Theory of Algebras, Contemp. Math. 716, Amer. Math. Soc., Providence, 2018, 25-36. Digital Object Identifier: 10.1090/conm/716/14425 Google Scholar: Lookup Link MathSciNet: MR3852398 · Zbl 1423.18043 · doi:10.1090/conm/716/14425
[25] D. JUTEAU, C. MAUTNER, and G. WILLIAMSON, Parity sheaves, J. Amer. Math. Soc. 27 (2014), no. 4, 1169-1212. Digital Object Identifier: 10.1090/S0894-0347-2014-00804-3 Google Scholar: Lookup Link MathSciNet: MR3230821 · Zbl 1344.14017 · doi:10.1090/S0894-0347-2014-00804-3
[26] S. KOENIG and D. YANG, Silting objects, simple-minded collections, t-structures and co-t-structures for finite-dimensional algebras, Doc. Math. 19 (2014), 403-438. MathSciNet: MR3178243 · Zbl 1350.16010
[27] G. LUSZTIG, Cells in affine Weyl groups and tensor categories, Adv. Math. 129 (1997), no. 1, 85-98. Digital Object Identifier: 10.1006/aima.1997.1645 Google Scholar: Lookup Link MathSciNet: MR1458414 · Zbl 0884.20026 · doi:10.1006/aima.1997.1645
[28] G. J. MCNINCH and D. M. TESTERMAN, Completely reducible \(\operatorname{SL} ( 2 ) -homomorphisms \), Trans. Amer. Math. Soc. 359 (2007), no. 9, 4489-4510. Digital Object Identifier: 10.1090/S0002-9947-07-04289-4 Google Scholar: Lookup Link MathSciNet: MR2309195 · Zbl 1128.20036 · doi:10.1090/S0002-9947-07-04289-4
[29] G. J. MCNINCH and D. M. TESTERMAN, Central subalgebras of the centralizer of a nilpotent element, Proc. Amer. Math. Soc. 144 (2016), no. 6, 2383-2397. Digital Object Identifier: 10.1090/proc/12942 Google Scholar: Lookup Link MathSciNet: MR3477055 · Zbl 1382.20050 · doi:10.1090/proc/12942
[30] O. MENDOZA HERNÁNDEZ, E. C. SÁENZ VALADEZ, V. SANTIAGO VARGAS, and M. J. SOUTO SALORIO, Auslander-Buchweitz context and co-t-structures, Appl. Categ. Structures 21 (2013), no. 5, 417-440. Digital Object Identifier: 10.1007/s10485-011-9271-2 Google Scholar: Lookup Link MathSciNet: MR3097052 · Zbl 1291.18017 · doi:10.1007/s10485-011-9271-2
[31] V. OSTRIK, On the equivariant K-theory of the nilpotent cone, Represent. Theory 4 (2000), 296-305. Digital Object Identifier: 10.1090/S1088-4165-00-00089-3 Google Scholar: Lookup Link MathSciNet: MR1773863 · Zbl 0986.20045 · doi:10.1090/S1088-4165-00-00089-3
[32] S. B. PRIDDY, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39-60. Digital Object Identifier: 10.2307/1995637 Google Scholar: Lookup Link MathSciNet: MR0265437 · Zbl 0261.18016 · doi:10.2307/1995637
[33] S. RICHE and G. WILLIAMSON, Tilting modules and the p-canonical basis, Astérisque 397, Soc. Math. France, Paris, 2018. MathSciNet: MR3805034 · Zbl 1437.20001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.