Kamran, Niky (ed.); Olver, Peter J. (ed.) Lie algebras, cohomology, and new applications to quantum mechanics. AMS special session on Lie algebras, cohomology, and new applications to quantum mechanics, March 20-21, 1992, Southwest Missouri State University, Springfield, MO, USA. (English) Zbl 0793.00019 Contemporary Mathematics. 160. Providence, RI: American Mathematical Society (AMS). viii, 310 p. (1994). Show indexed articles as search result. The articles of this volume will be reviewed individually.Indexed articles:Abraham-Shrauner, B.; Guo, A., Hidden symmetries of differential equations, 1-13 [Zbl 0811.34025]Alhassid, Y., Algebraic methods in scattering, 15-30 [Zbl 0804.47012]Bender, Carl M., Exact solutions to operator differential equations, 31-45 [Zbl 0805.58026]Biedenharn, L. C., The algebra of tensor operators for the unitary groups, 47-57 [Zbl 0824.22017]Feinsilver, Philip, Lie groups and probability, 59-74 [Zbl 0840.22027]Flath, Dan, Coherent tensor operators, 75-84 [Zbl 0820.22008]Floreanini, Roberto; Vinet, Luc, \({\mathcal U}_ q(sl(2))\) and \(q\)-special functions, 85-100 [Zbl 0807.33013]Ginocchio, Joseph N., The group representation matrix in quantum mechanical scattering, 101-111 [Zbl 0810.22009]González-López, Artemio; Kamran, Niky; Olver, Peter J., Quasi-exact solvability, 113-140 [Zbl 0805.58064]Jørgensen, Palle E. T., Quantization and deformation of Lie algebras, 141-149 [Zbl 0823.46067]Iachello, Francesco, Algebraic theory, 151-171 [Zbl 0811.17033]Kaup, D. J., The time-dependent Schrödinger equation in multidimensional integrable evolution equations, 173-190 [Zbl 0816.35115]Kalnins, E. G.; Miller, Willard jun.; Mukherjee, Sanchita, Models of \(q\)-algebra representations: Matrix elements of \(U_ q(su_ 2)\), 191-208 [Zbl 0815.33012]Paldus, Josef, Many-electron correlation problem and Lie algebras, 209-236 [Zbl 0806.22013]Shifman, Mikhail A., Quasi-exactly-solvable spectral problems and conformal field theory, 237-262 [Zbl 0805.58065]Turbiner, Alexander, Lie-algebras and linear operators with invariant subspaces, 263-310 [Zbl 0809.17023] Cited in 2 Documents MSC: 00B25 Proceedings of conferences of miscellaneous specific interest 17-06 Proceedings, conferences, collections, etc. pertaining to nonassociative rings and algebras 81-06 Proceedings, conferences, collections, etc. pertaining to quantum theory Keywords:Lie algebras; Cohomology; Quantum mechanics; AMS; Springfield, MO (USA) PDF BibTeX XML Cite \textit{N. Kamran} (ed.) and \textit{P. J. Olver} (ed.), Lie algebras, cohomology, and new applications to quantum mechanics. AMS special session on Lie algebras, cohomology, and new applications to quantum mechanics, March 20-21, 1992, Southwest Missouri State University, Springfield, MO, USA. Providence, RI: American Mathematical Society (1994; Zbl 0793.00019) Full Text: DOI