×

zbMATH — the first resource for mathematics

On the structure of semilattice sums. (English) Zbl 0793.08010
This paper investigates the structure of algebras of given type \(\tau: \Omega\to N\) in regular classes and in particular in regular classes of modes [see the authors: Modal theory. An algebraic approach to order, geometry, and convexity (1985; Zbl 0553.08001)]. Recall that an identity is regular if the sets of variables appearing on each side are equal. A class \({\mathcal V}\) of algebras of type \(\tau: \Omega\to N\) is regular if the only identities satisfied by all algebras in \({\mathcal V}\) are regular. Otherwise, \({\mathcal V}\) is irregular. The algebras considered in this paper are of type \(\tau: \Omega\to \mathbb{Z}^ +\) with \(2\in \tau(\Omega)\).

MSC:
08C99 Other classes of algebras
06A12 Semilattices
08B99 Varieties
08B25 Products, amalgamated products, and other kinds of limits and colimits
PDF BibTeX XML Cite
Full Text: EuDML
References:
[1] A. H. Clifford: Semigroups admitting relative inverses. Ann. Math. 42 (1941), 1037-1049. · Zbl 0063.00920
[2] P. M. Cohn: Universal Algebra. Reidel, Dordrecht, 1981. · Zbl 0461.08001
[3] J. Dudek: Varieties of idempotent commutative groupoids. Fund. Math. 120 (1983), 193-204. · Zbl 0546.20049
[4] J. Dudek E. Graczyńska: The lattice of varieties of algebras. Bull. Acad. Polon. Sci. Sér. Sci. Math. 29 (1981), 337-340.
[5] E. Graczyńska D. Kelly P. Winkler: On the regular part of varieties of algebras. Algebra Universalis 23 (1986), 77-84. · Zbl 0605.08004
[6] J. Ježek T. Kepka: Ideal free CIM-groupoids and open convex sets. Springer Lecture Notes in Mathematics 1004, Universal Algebra and Lattice Theory, 1983, 166-175.
[7] J. Ježek T. Kepka: Medial Groupoids. Rozpravy ČSAV, Řada mat. a přír. věd. 93/2 (1983), Academia, Praha. · Zbl 0538.08008
[8] J. Ježek T. Kepka: The lattice of varieties of commutative idempotent abelian distributive groupoids. Algebra Universalis 5 (1975), 225-237. · Zbl 0321.20036
[9] M. Kuczma: An introduction to the Theory of Functional Equations and Inequalities. P.W.N, Warszawa, 1985. · Zbl 0555.39004
[10] G. Lallement: Demi-groupes réguliers. Ann. Math. Pura Appl. 77 (1967), 47-129. · Zbl 0203.02001
[11] A. I. Maľcev: Algebraic Systems. Springer-Verlag, Berlin 1973. · Zbl 0282.65028
[12] A. I. Maľcev: Multiplication of classes of algebraic systems. (Russian), Sibirsk. Math. Zh. 8 (1967), 346-365.
[13] I. I. Meľnik: Normal closures of perfect varieties of universal algebras. (Russian), Ordered sets and lattices, Izdat. Saratov. Univ., Saratov (1971), 56-65, MR 52 # 3011.
[14] B. Melnik: Theory of filters. Commun. Math. Phys. 15 (1969), 1 - 46. · Zbl 0182.59601
[15] W. D. Neumann: On the quasivariety of convex subsets of affine spaces. Arch. Math. 21 (1970), 11-16. · Zbl 0194.01502
[16] M. Petrich: Lectures in Semigroups. Akademie-Verlag, Berlin, 1977. · Zbl 0369.20036
[17] J. Plonka: On a method of construction of abstract algebras. Fund. Math. 61 (1967), 183-189. · Zbl 0168.26701
[18] J. Plonka: On equational classes of abstract algebras defined by regular equations. Fund. Math. 64 (1969), 241-247. · Zbl 0187.28702
[19] F. Poyatos: Generalizacion de un teorema de J. A. Green a algebras universales. Rev. Math. Hisp.-Amer. (4)40 (1980), 193-205. · Zbl 0523.08001
[20] A. Romanowska: Constructing and reconstructing of algebras. Demonstratio Math. 18 (1985), 209-230. · Zbl 0594.08001
[21] A. Romanowska: On regular and regularised varieties. Algebra Universalis 23 (1986), 215-241. · Zbl 0619.08004
[22] A. Romanowska J. D. H. Smith: From affine to projective geometry via convexity. Springer Lecture Notes in Mathematics 1149, Universal Algebra and Lattice Theory, 1985, 255-269.
[23] A. Romanowska J. D. H. Smith: Modal Theory-an Algebraic Approach to Order. Geometry and Convexity, Heldermann Verlag, Berlin, 1985. · Zbl 0553.08001
[24] A. Romanowska J. D. H. Smith: On the structure of barycentric algebras. Houston J. Math.,toappear. · Zbl 0725.08001
[25] W. W. Saliĭ: Equationally normal varieties of semigroups. (Russian), Izv. Vyssh. Uchebn. Zaved. Mat. 84 (1969), 61-68, MR 41 # 8555.
[26] W. W. Saliĭ: A theorem on homomorphisms of strong semilattices of semigroups. (Russian), Theory of semigroups and its applications, V. V. Vagner (ed.), Izd. Saratov. Univ. 2 (1970), 69-74, MR 53 # 10959.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.