zbMATH — the first resource for mathematics

Devil’s staircase route to chaos in a forced relaxation oscillator. (English) Zbl 0793.34028
We use one-dimensional techniques to characterize the Devil’s staircase route to chaos in a relaxation oscillator of the Van der Pol type with periodic forcing term. In particular, by using symbolic dynamics, we give the behaviour for certain range of parameters values of a Cantor set of solutions having a certain rotation set associated to a rational number. Finally, we explain the phenomena observed experimentally in the system by M. P. Kennedy, K. R. Krieg and L. O. Chua [IEEE Trans. Circuits Syst. 36, 1133-1139 (1989)] related with the appearance of secondary staircases intercalated into the primary staircases which were found by B. Van der Pol and J. Van der Mark [Nature 120 (1927)].
Reviewer: L.Alsedà

37-XX Dynamical systems and ergodic theory
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
54H20 Topological dynamics (MSC2010)
Full Text: DOI Numdam EuDML
[1] L. ALSEDÀ, A. FALCÓ, The bifurcations of a piecewise monotone family of circle maps related to the van der Pol equation, Procedings of European Conference on Iteration Theory, Caldes de Malavella, World Scientific, (1987).
[2] L. ALSEDÀ, J. LLIBRE, R. SERRA, Bifurcations for a circle map associated with the van der Pol equation, Sur la théorie de l’itération et ses applications, Colloque internationaux du CNRS Toulouse, 332 (1982). · Zbl 0523.34043
[3] L. ALSEDÀ, J. LLIBRE, M. MISIUREWICZ, Combinatorial dynamics and entropy in dimension one, Advanced Series on Nonlinear Dynamics, World Scientific, Singapore, 1993. · Zbl 0843.58034
[4] L. ALSEDÀ, F. MAÑOSAS, Kneading theory and rotation interval for a class of circle maps of degree one, Nonlinearity, 3 (1990). · Zbl 0735.54026
[5] M.L. CARTWRIGHT, J.E. LITTLEWOOD, On nonlinear differential equations of second order II, Ann. of Math., 48 (1947). · Zbl 0029.12602
[6] A. CHENCINER, J.M. GAMBAUDO, Ch. TRESSER, Une remarque sur la structure des endomorphismes de degré 1 du cercle, C. R. Acad. Sci., Paris série I, 299 (1984). · Zbl 0584.58004
[7] J. GUCKENHEIMER, P. HOLMES, Nonlinear oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. · Zbl 0515.34001
[8] R. ITO, Rotation sets are closed, Math. Proc. Camb. Phil. Soc., 89 (1981). · Zbl 0484.58027
[9] A. KATOK, Some remarks on Birkhoff and Mather twist theorems ergod., Theor. Dynam. Sys., 2 (1982). · Zbl 0521.58048
[10] M.P. KENNEDY, K.R. KRIEG, L.O. CHUA, The devil’s staircase : the electrical Engineer’s fractal, IEEE Trans. on Circuits and Systems., 36 (1989), 1133-1139.
[11] M. LEVI, Qualitative analysis of the periodically forced relaxation oscillations, Mem. Amer. Math., Soc., 244 (1981). · Zbl 0448.34032
[12] N. LEVINSON, A second order differential equation with singular solutions, Ann. of Math., 50 (1949). · Zbl 0045.36501
[13] J. MOSER, Stable and random motions in dynamical systems, Princeton University Press (1973). · Zbl 0271.70009
[14] M. MISIUREWICZ, Rotation intervals for a class of maps of the real line into itself, Ergod. Theor. Dynam. Sys., 6 (1986). · Zbl 0615.54030
[15] S.E. NEWHOUSE, The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms, IHES, 1977. · Zbl 0445.58022
[16] B. VAN DER POL, On relaxation oscillations, Phil. Mag., 2 (1926). · JFM 52.0450.05
[17] B. VAN DER POL, J. VAN DER MARK, Frequency demultiplication, Nature, 120 (1927).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.