×

zbMATH — the first resource for mathematics

The index of isolated critical points and solutions of elliptic equations in the plane. (English) Zbl 0793.35021
The purpose of the present paper is to point out how statements about geometric quantities associated with solutions of elliptic equations can be derived from basic facts of differential topology like index calculus and the Gauss-Bonnet theorem. We will focus on two-dimensional problems. The results we obtain are of two different kinds. (1) Identities or estimates relating the number and character of critical points (i.e., zeroes of the gradient) of solutions of elliptic equations with the boundary data. (2) Differential identities on the gradient length and the curvatures of the level curves and of the curves of steepest descent of an arbitrary smooth function with isolated critical points.

MSC:
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35J15 Second-order elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
35J25 Boundary value problems for second-order elliptic equations
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] G. Alessandrini , Critical points of solutions of elliptic equations in two variables , Ann. Scuola Norm. Sup. Pisa Cl. Sci . ( 4 ), 14 ( 1987 ), 229 - 256 . Numdam | MR 939628 | Zbl 0649.35026 · Zbl 0649.35026 · numdam:ASNSP_1987_4_14_2_229_0 · eudml:84005
[2] G. Alessandrini , Isoperimetric inequalities for the length of level lines of solutions of quasilinear capacity problems in the plane , Z. Angew. Math. Phys. 40 ( 1989 ), 920 - 924 . MR 1027585 | Zbl 0712.35034 · Zbl 0712.35034 · doi:10.1007/BF00945812
[3] L. Bers , Function-theoretical properties of solutions of partial differential equations of elliptic type , Ann. of Math. Stud. 33 ( 1954 ), 69 - 94 . MR 70009 | Zbl 0057.08602 · Zbl 0057.08602
[4] P.L. Duren , Theory of Hp Spaces , Academic Press , New York , 1970 . MR 268655 | Zbl 0215.20203 · Zbl 0215.20203
[5] F. Federer , Geometric Measure Theory , Springer Verlag , New York , 1969 . MR 257325 | Zbl 0176.00801 · Zbl 0176.00801
[6] D. Kinderlehrer - G. Stampacchia , An Introduction to Variational Inequalities and Their Applications , Academic Press , New York , 1980 . MR 567696 | Zbl 0457.35001 · Zbl 0457.35001
[7] J. Milnor , Differential Topology , Princeton University Press , Princeton , 1958 .
[8] C.B. Morrey , Multiple Integrals in the Calculus of Variations , Springer Verlag , New York , 1966 . MR 202511 | Zbl 0142.38701 · Zbl 0142.38701
[9] M. Morse , Relations between the critical points of a real function of n independent variables , Trans. Amer. Math. Soc. 27 , 3 ( 1925 ), 345 - 396 . MR 1501318 | JFM 51.0451.01 · JFM 51.0451.01
[10] C. Pucci , An angle’s maximum principle for the gradient of solutions of elliptic equations , Boll. Un. Mat. Ital. A ( 7 ), 1 ( 1987 ), 135 - 139 . MR 880110 | Zbl 0628.35034 · Zbl 0628.35034
[11] K.F. Pagani-Masciadri , Remarks on the critical points of solutions to some quasilinear elliptic equations of second order in the plane , to appear J. Math. Anal. Appl. MR 1215631 | Zbl 0808.35029 · Zbl 0808.35029 · doi:10.1006/jmaa.1993.1136
[12] E.H. Rothe , A relation between the type numbers of a critical point and the index of the corresponding field of gradient vectors , Math. Nachr. 4 ( 1950-51 ), 12 - 27 . MR 40597 | Zbl 0044.31903 · Zbl 0044.31903 · doi:10.1002/mana.19500040103
[13] S. Sakaguchi , Critical points of solutions to the obstacle problem in the plane , preprint. · Zbl 0823.35068 · numdam:ASNSP_1994_4_21_2_157_0 · eudml:84172
[14] F. Schulz , Regularity Theory for Quasilinear Elliptic Systems and Monge-Ampère Equations in Two Dimensions , Springer Verlag , New York , 1990 . MR 1079936 | Zbl 0709.35038 · Zbl 0709.35038 · doi:10.1007/BFb0098277
[15] G. Talenti , On functions, whose lines of steepest descent bend proportionally to level lines , Ann. Scuola Norm. Sup. Pisa Cl. Sci . ( 4 ), 10 ( 1983 ), 587 - 605 . Numdam | MR 753157 | Zbl 0542.35007 · Zbl 0542.35007 · numdam:ASNSP_1983_4_10_4_587_0 · eudml:83919
[16] I.N. Vekua , Generalized Analytic Functions , Pergamon Press , Oxford , 1962 . MR 150320 | Zbl 0100.07603 · Zbl 0100.07603
[17] J.L. Walsh , The Location of Critical Points of Analytic and Harmonic Functions , American Mathematical Society , New York , 1950 . MR 37350 | Zbl 0041.04101 · Zbl 0041.04101
[18] C.E. Weatherburn , Differential Geometry of Three Dimensions , Cambridge University Press , Cambridge , 1931 . JFM 56.0589.01 · JFM 56.0589.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.