Hayek Calil, Nácere; González, B. J. The index \(_ 2 F_ 1\)-transform of generalized functions. (English) Zbl 0793.46019 Commentat. Math. Univ. Carol. 34, No. 4, 657-671 (1993). Summary: The index transformation \[ F(\tau)=\int^ \infty_ 0 f(t){_ 2 F_ 1}(\mu+\textstyle{{1\over 2}}+ i\tau,\;\mu+\textstyle{{1\over 2}}- i\tau;\;\mu+1; -t)t^ \alpha dt, \] \({_ 2F_ 1}(\mu+{1\over 2}+ i\tau, \mu+{1\over 2}-i\tau; \mu+1; -t)\) being the Gauss hypergeometric function, is defined on certain space of generalized functions and its inversion formula established for distributions of compact support on \(I=(0,\infty)\). Cited in 1 Review MSC: 46F12 Integral transforms in distribution spaces Keywords:index integral transform; Gauss hypergeometric function; space of generalized functions; inversion formula; distributions of compact support PDF BibTeX XML Cite \textit{N. Hayek Calil} and \textit{B. J. González}, Commentat. Math. Univ. Carol. 34, No. 4, 657--671 (1993; Zbl 0793.46019) Full Text: EuDML