×

zbMATH — the first resource for mathematics

The index \(_ 2 F_ 1\)-transform of generalized functions. (English) Zbl 0793.46019
Summary: The index transformation \[ F(\tau)=\int^ \infty_ 0 f(t){_ 2 F_ 1}(\mu+\textstyle{{1\over 2}}+ i\tau,\;\mu+\textstyle{{1\over 2}}- i\tau;\;\mu+1; -t)t^ \alpha dt, \] \({_ 2F_ 1}(\mu+{1\over 2}+ i\tau, \mu+{1\over 2}-i\tau; \mu+1; -t)\) being the Gauss hypergeometric function, is defined on certain space of generalized functions and its inversion formula established for distributions of compact support on \(I=(0,\infty)\).

MSC:
46F12 Integral transforms in distribution spaces
PDF BibTeX XML Cite
Full Text: EuDML