×

On a complete set of generators for dot-depth two. (English) Zbl 0793.68087

Summary: A complete set of generators for Straubing’s dot-depth-two monoids has been characterized as a set of quotients of the form \(A^*/\sim_{(n,m)}\), where \(n\) and \(m\) denote positive integers, \(A^*\) denotes the free monoid generated by a finite alphabet \(A\), and \(\sim_{(n,m)}\) denote congruences related to a version of the Ehrenfeucht-Fraïssé game. The paper studies combinatorial properties of the \(\sim_{(n,m)}\)’s and in particular the inclusion relations between them. Several decidability and inclusion consequences are discussed.

MSC:

68Q45 Formal languages and automata
03B25 Decidability of theories and sets of sentences
20M35 Semigroups in automata theory, linguistics, etc.
Full Text: DOI

References:

[1] Blanchet-Sadri, F., Some logical characterizations of the dot-depth hierarchy and applications, (Ph.D. Thesis (1989), McGill University: McGill University Montreal, Que) · Zbl 0831.68066
[2] Blanchet-Sadri, F., Games, equations and the dot-depth hierarchy, Comput. Math. Appl., 18, 809-822 (1989) · Zbl 0682.03015
[3] Blanchet-Sadri, F., Combinatorial properties of some congruences related to dot-depth \(k\), (Tech. Rept. No. 89-27 (1989), Department of Mathematics and Statistics of McGill University: Department of Mathematics and Statistics of McGill University Montreal, Que), 1-29 · Zbl 0793.68087
[4] Blanchet-Sadri, F., On dot-depth two, RAIRO Inform. Théor. Appl., 24, 521-529 (1990) · Zbl 0718.68046
[5] F. Blanchet-Sadri, Games, equations and dot-depth two monoids, Discrete Appl. Math., to appear.; F. Blanchet-Sadri, Games, equations and dot-depth two monoids, Discrete Appl. Math., to appear. · Zbl 0791.20068
[6] Brzozowski, J. A.; Knast, R., The dot-depth hierarchy of star-free languages is infinite, Comput. System Sci., 16, 37-55 (1978) · Zbl 0368.68074
[7] Cohen, R. S.; Brzozowski, J. A., Dot-depth of star-free events, Comput. System Sci., 5, 1-15 (1971) · Zbl 0217.29602
[8] Ebbinghaus, H.-D.; Flum, J.; Thomas, W., Mathematical Logic (1984), Springer: Springer New York · Zbl 0556.03001
[9] Eilenberg, S., Automata, Languages and Machines, Vol. B (1976), Academic Press: Academic Press New York · Zbl 0359.94067
[10] McNaughton, R.; Papert, S., Counter-Free Automata (1971), MIT Press: MIT Press Cambridge, MA · Zbl 0232.94024
[11] Perrin, D.; Pin, J.-E., First-order logic and star-free sets, Comput. System Sci., 32, 393-406 (1986) · Zbl 0618.03015
[12] Pin, J.-E., Variétés de Langages Formels (1984), Masson: Masson Paris · Zbl 0636.68093
[13] Pin, J.-E., Hiérarchies de concaténation, RAIRO Inform. Théor., 18, 23-46 (1984) · Zbl 0559.68062
[14] Schützenberger, M. P., On finite monoids having only trivial subgroups, Inform. and Control, 8, 190-194 (1965) · Zbl 0131.02001
[15] Simon, I., Piecewise testable events, (Proceedings of the Second GI Conference, Lecture Notes in Computer Science, 33 (1975), Springer: Springer Berlin), 214-222 · Zbl 0316.68034
[16] Straubing, H., Finite semigroup varieties of the form \(V*D\), Pure Appl. Algebra, 36, 53-94 (1985) · Zbl 0561.20042
[17] Straubing, H., Semigroups and languages of dot-depth two, (Proceedings of the Thirteenth ICALP, Lecture Notes in Computer Science, 226 (1986), Springer: Springer New York), 416-423 · Zbl 0596.68056
[18] Thomas, W., Classifying regular events in symbolic logic, Comput. System Sci., 25, 360-376 (1982) · Zbl 0503.68055
[19] Thomas, W., An application of the Ehrenfeucht—Fraïssé game in formal language theory, Bull. Soc. Math. France, 16, 11-21 (1984) · Zbl 0558.68064
[20] Thomas, W., A concatenation game and the dot-depth hierarchy, (Böger, E., Computation Theory and Logic, Lecture Notes in Computer Science, 270 (1987), Springer: Springer New York), 415-426 · Zbl 0643.68073
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.