zbMATH — the first resource for mathematics

Local rings over which all modules have rational Poincaré series. (English) Zbl 0794.13010
Soient \(R\) un anneau commutatif local d’idéal maximal \(M\) et corps résiduel \(k\), \(E\) un \(R\)-module de type fini et \(P^ R_ E(n)=\sum^ \infty_{n=0} b^ R_ n (E)t^ n\) la série de Poincaré du \(R\)- module \(E\), où \(b^ R_ n(E)=\dim_ k \text{Tor}^ R_ n (E,k)\) sont les nombres de Betti. L’A. démontre les résultats principaux suivants: Si l’algèbre de Lie homotopique \(\Pi^*(R)\) contient une sous-algèbre de Lie libre graduée de codimension finie, il existe un polynôme \(\text{Den}^ R(t) \in \mathbb{Z} [t]\) tel que our tout \(R\)- module de type fini \(E\) la série \(\text{Den}^ R (t) P^ R_ E(t) \in \mathbb{Z} [t]\). Si, de plus, la sous-algèbre de Lie libre contient \(\Pi^ j(R)\) pour \(j>n\), alors \(\text{Den}^ R (t)P^ R_ k(t)\) divise \(\prod_{0 \leq 2i+1 \leq n} (1+t^{2i+1})^{e_{2i+1}}\), où \(e_ i=\dim_ k \pi^ i(R)\) est la deviation d’ordre \(i\) de \(R\). Si la fonction \(b^ R_ E\) est polynômiale pour tout \(R\)-module de type fini \(E\), alors \(R\) est un anneau d’intersection complète de codimension \(\leq q(R)+1\), où \(q(R)=(e(e+1)/2)-\dim_ k (M^ 2/M^ 3)\). Si \(R\) est une intersection complète de multiplicité minimale, alors \(b^ R_ E\) est une fonction polynômiale.

13D40 Hilbert-Samuel and Hilbert-Kunz functions; Poincaré series
13D03 (Co)homology of commutative rings and algebras (e.g., Hochschild, André-Quillen, cyclic, dihedral, etc.)
13C40 Linkage, complete intersections and determinantal ideals
13H99 Local rings and semilocal rings
Full Text: DOI
[1] Anick, D., A counterexample to a conjecture of Serre, Ann. of math., 115, 1-33, (1982) · Zbl 0454.55004
[2] Avramov, L.L., Small homomorphisms of local rings, J. algebra, 50, 400-453, (1978) · Zbl 0395.13005
[3] Avramov, L.L., Obstructions to the existence of multiplicative structures on minimal free resolutions, Amer. J. math., 103, 1-31, (1981) · Zbl 0447.13006
[4] Avramov, L.L., Free Lie subalgebras of the cohomology of local rings, Trans. amer. math. soc., 270, 589-608, (1982) · Zbl 0516.13022
[5] Avramov, L.L.; Lemaire, J.-M.; Thomas, J.-C., Local algebra and rational homotopy, Homotopie algébrique et algèbre locale, Astérisque, 113-114, 15-43, (1984)
[6] Avramov, L.L., Golod homomorphisms, (), 56-78, Lecture Notes in Mathematics · Zbl 0589.13004
[7] Avramov, L.L., Modules of finite virtual projective dimension, Invent. math., 96, 71-101, (1989) · Zbl 0677.13004
[8] Avramov, L.L., Homological asymptotics of modules over local rings, (), 33-62 · Zbl 0788.18010
[9] Avramov, L.L.; Félix, Y., Espaces de golod, (), 29-34 · Zbl 0725.55008
[10] Avramov, L.L.; Gasharov, V.N.; Peeva, I.V., Modules of finite virtual projective dimension, II, Asymptotic properties, (1993), Preprint
[11] Avramov, L.L.; Halperin, S., Through the looking Glass: A dictionary between rational homotopy theory and local algebra, (), 1-27, Lecture Notes in Mathematics
[12] Avramov, L.L.; Kustin, A.R.; Miller, M., Poincaré series of modules over local rings of small embedding codepth or small linking number, J. algebra, 118, 162-204, (1988) · Zbl 0648.13008
[13] Bourbaki, N., Algèbre. chapitre X: algèbre homologique, (1980), Masson Paris · Zbl 0455.18010
[14] Bourbaki, N., Algèbre commutative. chapitre VIII: dimension, (1983), Masson Paris · Zbl 0579.13001
[15] Buchsbaum, D.; Eisenbud, D., Generic free resolutions and a family of generically perfect ideals, Adv. in math., 18, 245-301, (1975) · Zbl 0336.13007
[16] Buchweitz, R.-O., The comparison theorem, (), 96-116, Lecture Notes in Mathematics
[17] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. amer. math. soc., 260, 35-64, (1980) · Zbl 0444.13006
[18] Gasharov, V.N.; Peeva, I.V., Boundedness versus periodicity over commutative local rings, Trans. amer. math. soc., 320, 569-580, (1990) · Zbl 0706.13020
[19] Ghione, F.; Gulliksen, T.H., Some reduction formulas for Poincaré series of modules, Atti accad. naz. lincei mem. cl. sci. fis. mat. natur. sez. ia, 58, 8, 82-91, (1975) · Zbl 0348.13014
[20] Golod, E.S.; Golod, E.S., On the homologies of certain local rings, Dokl. akad. nauk. SSSR, Soviet math. dokl., 3, 745-748, (1962), English translation · Zbl 0122.04201
[21] Gulliksen, T.H., A change of rings theorem with applications to Poincaré series and intersection multiplicity, Math. scand., 34, 167-183, (1974) · Zbl 0292.13009
[22] Gulliksen, T.H., On the Hilbert series of the homology of differential graded algebras, Math. scand., 46, 15-22, (1980) · Zbl 0461.13004
[23] Gulliksen, T.H., On the deviations of a local ring, Math. scand., 47, 5-20, (1980) · Zbl 0458.13010
[24] Gulliksen, T.H.; Levin, G., Homology of local rings, () · Zbl 0208.30304
[25] Herzog, J., Homological properties of the module of differentials, Atas da 6^a escola de álgebra (Recife), colecào atas soc. brasileira de math., Vol. 14, 35-64, (1981), Rio de Janeiro
[26] Jacobsson, C.; Kustin, A.R.; Miller, M., The Poincaré series of a codimension four Gorenstein ring is rational, J. pure appl. algebra, 38, 255-275, (1985) · Zbl 0575.13007
[27] Jacobsson, C.; Stoltenberg-Hansen, V., Poincaré Betti series are primitive recursive, J. London math. soc., 31, 2, 1-9, (1985) · Zbl 0584.03032
[28] Kapranov, M.M.; Kapranov, M.M., On the derived category and K-functor of coherent sheaves on intersections of quadrics, Izv. akad. nauk SSSR ser. mat., Math. USSR-izv., 32, 191-204, (1989), English translation · Zbl 0679.14005
[29] A.R. Kustin and S.M. Palmer, The Poincaré series of every finitely generated module over a codimension four almost complete intersection is a rational function, J. Pure Appl. Algebra, to appear. · Zbl 0812.13011
[30] Lemaire, J.-M., Algèbres connexes et homologie des espaces de lacets, () · Zbl 0293.55004
[31] Levin, G., Finitely generated ext-algebras, Math. scand., 49, 161-180, (1981) · Zbl 0491.13011
[32] Löfwall, C., On the subalgebra generated by one-dimensional elements in the yoneda ext-algebra, (), 291-338, Lecture Notes in Mathematics
[33] C. Löfwall, The Yoneda Ext-algebra for an equi-characteristic local ring (R, \(m\) ) with \(m\)3 = 0, unpublished manuscript.
[34] Milnor, J.W.; Moore, J.C., On the structure of Hopf algebras, Ann. of math., 81, 211-264, (1965) · Zbl 0163.28202
[35] Roos, J.-E., On the use of graded Lie algebras in the theory of local rings, (), 204-230, London Mathematical Society Lecture Note Series
[36] Roos, J.-E., A computer-aided study of the graded Lie algebra of a local commutative Noetherian ring, J. pure appl. algebra, 91, 255-315, (1994), this volume · Zbl 0804.13004
[37] Rossi, M.E.; Valla, G., Multiplicity and t-isomultiple ideals, Nagoya math. J., 110, 81-111, (1988) · Zbl 0658.13018
[38] Sjödin, G., A set of generators for ext_R(k,k), Math. scand., 38, 1-12, (1976)
[39] Srinivasan, H., Algebra structures on some canonical resolutions, J. algebra, 122, 150-187, (1989) · Zbl 0676.13007
[40] L.-C. Sun, Growth of Betti numbers of modules over local rings of small embedding codimension or small linkage number, J. Pure Appl. Algebra, to appear. · Zbl 0836.13008
[41] Tate, J., Homology of Noetherian rings and of local rings, Illinois J. math., 1, 14-27, (1957) · Zbl 0079.05501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.