Saito, Hiroshi Generalization of Abel’s theorem and some finiteness property of zero- cycles on surfaces. (English) Zbl 0794.14002 Compos. Math. 84, No. 3, 289-332 (1992). Let \(C\) be a nonsingular projective curve, and \(J(C)\) be its jacobian. To a divisor \(D\) of degree zero on \(C\) is associated a point \(\gamma (D)\) of the jacobian by integration, and so-called Abel’s theorem states that the image of \(D\) in the jacobian vanishes if and only if \(D\) is rationally equivalent to zero, i.e., \(D\) is a divisor of a rational function of \(C\), in other words, it gives an algebraic condition for \(\gamma (D)=0\), whereas the jacobian is defined complex-analytically. The following conjecture of S. Bloch [“Lectures on algebraic cycles”, Duke Univ. Math. Ser. 4 (1980; Zbl 0436.14003)] can be regarded as the weight 2 counterpart of the above equivalence: For any smooth projective variety \(V\) over \(\mathbb{C}\), there exists a filtration on the Chow group of 0-cycles \(\text{CH}_ 0(V)\). Let \(S\) be a surface and let \(z\) be a cycle on \(V \times S\) with \(\dim z=m=\dim V\). Then \(z\) induces a map \(z:\text{CH}_ 0 (V) \to \text{CH}_ 0 (S)\). - - We get also \([z]:gr^ \bullet \text{CH}_ 0(V) \to gr^ \bullet \text{CH}_ 0(S)\). Conjecture (S. Bloch). The map \([z]\) depends only upon the cohomology class \(\{c\} \in H^ 4(V \times S)\). Metaconjecture. There is an equivalence of category between a suitable category of polarized Hodge structures of weight 2 and a category built up from \(gr^ 2\text{CH}_ 0 (S)\). The aim of this article is two-fold: to give a condition for the vanishing of cycles in the intermediate jacobian, and to construct filtrations on the Chow groups which satisfy the above conjectures. Cited in 2 ReviewsCited in 3 Documents MSC: 14C05 Parametrization (Chow and Hilbert schemes) 14C25 Algebraic cycles 14K30 Picard schemes, higher Jacobians 14H40 Jacobians, Prym varieties 14J99 Surfaces and higher-dimensional varieties Keywords:polarized Hodge structures of weight 2; vanishing of cycles in the intermediate jacobian; filtration on the Chow group PDF BibTeX XML Cite \textit{H. Saito}, Compos. Math. 84, No. 3, 289--332 (1992; Zbl 0794.14002) Full Text: Numdam EuDML References: [1] Angeniol, B. : Familles de cycles algébriques - schémas de Chow , Lecture Notes in Math. 896, Springer Verlag, Berlin, Heidelberg, New York, 1981. · Zbl 0496.14004 · doi:10.1007/BFb0091696 [2] Angeniol, B. , and El Zein, F. : La classe fondamentale relative d’un cycle , Bull. Soc. Math. France, Memoire, 58 (1978), 67-93. · Zbl 0388.14003 · numdam:MSMF_1978__58__67_0 · eudml:94781 [3] Artin, M. , Grothendieck, A. , Verdier, J.-P. : Théorie des Topos et Cohomologie étales de schémas, exposé XVIII par Deligne, P. , Lecture Notes in Math., 305, Springer Verlag, Berlin, Heidelberg, New York, 1973. · Zbl 0245.00002 · doi:10.1007/BFb0070714 [4] Bloch, S. : Torsion algebraic cycles and a theorem of Roitman , Comp. Math., 39 (1979), 107-127. · Zbl 0463.14002 · numdam:CM_1979__39_1_107_0 · eudml:89412 [5] Bloch, S. : Lectures on algebraic cycles , Duke University Mathematics Series IV, Durham, 1980. · Zbl 0436.14003 [6] Deligne, P. : Theorie de Hodge III , Publ. math. IHES, 44 (1974) 5-77. · Zbl 0237.14003 · doi:10.1007/BF02685881 · numdam:PMIHES_1974__44__5_0 · eudml:103935 [7] Kleiman, S. : Algebraic cycles and the Weil conjecture, in Dix exposés sur la cohomologie des schémas , North-Holland, Amsterdam, 1968. · Zbl 0198.25902 [8] Merkur’Ev, A.S. , and Suslin, A.A. : K-cohomology of Brauer-Severi varieties and the norm residue homomorphism , Izv. Acad. Nauk, 46 (1982), 1011-1046(= Math. USSR. Izv. 21 (1983), 307-340.) · Zbl 0525.18008 · doi:10.1070/IM1983v021n02ABEH001793 [9] Roitman, A.A. : The torsion of the group of 0-cycles modulo rational equivalence , Ann. of Math., 111 (1980), 553-569. · Zbl 0504.14006 · doi:10.2307/1971109 [10] Saavedra, N. : Catégories Tannakiens , Lecture Notes in Math. 265, Springer Verlag, Berlin, Heidelberg, New York, 1972. · Zbl 0241.14008 [11] Saito, H. : The Hodge cohomology and cubic equivalences , Nagoya Math. J., 94 (1984) 1-41. · Zbl 0574.14005 · doi:10.1017/S002776300002081X [12] Saito, H. : A note on cubic equivalences , Nagoya Math. J., 101 (1986) 1-26. · Zbl 0594.14008 · doi:10.1017/S0027763000000313 [13] Samuel, P. : Relations d’équivalence en géométrie algébrique , in Proceeding of International Congress of Mathematicians, 1958, Cambridge University Press, Cambridge, 1960. · Zbl 0119.36901 [14] Severi, F. : Ulterior sviluppi della teoria delle serie di equivalenza sulle suerfidie algebriche, appendice I a Geometria dei sistemi algebrici sopra una superficie e sopra una varietà algebrica , vol. terzo, Edizioni Cremonese, Roma, 1959. [15] Verdier, J.-P. : Classes d’homologie associée à un cycle , Astérisque, 36-37 (1976), 101-151 (exposé VI). · Zbl 0346.14005 [16] Weil, A. : Oeuvres Scientifiques , Collected papers, Vol. II, Corrected second printing, Springer Verlag, New York, Heidelberg, Berlin, 1980. · Zbl 0428.01012 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.