×

zbMATH — the first resource for mathematics

Homogeneous functions on light cones: The infinitesimal structure of some degenerate principal series representations. (English) Zbl 0794.22012
The authors analyze in a systematic fashion the structure of some degenerate principal series representations of real classical simple Lie groups \(\text{O}(p,q)\), \(\text{U}(p,q)\) and \(\text{Sp}(p,q)\). Their elementary method can be viewed as a refinement of the classical arguments of V. Bargmann used in the classification of irreducible admissible representations of \(\text{SL}(2,\mathbb{R})\).

MSC:
22E46 Semisimple Lie groups and their representations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] H. Abarbanel, The inverse r-squared force; an introduction to its symmetries, Essays in Honor of Valentine Bargmann , Princeton Univ. Press, Princeton, NJ, 1976. · Zbl 0346.70011
[2] R. L. Anderson, J. Fischer, and R. Rączka, Coupling problem for \?(\?,\?) ladder representations. I, Proc. Roy. Soc. Ser. A 302 (1968), 491 – 500. · Zbl 0159.29103
[3] V. Bargmann, Irreducible unitary representations of the Lorentz group, Ann. of Math. (2) 48 (1947), 568 – 640. · Zbl 0045.38801 · doi:10.2307/1969129 · doi.org
[4] Alexandre Beĭlinson and Joseph Bernstein, Localisation de \?-modules, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 1, 15 – 18 (French, with English summary). · Zbl 0476.14019
[5] Jean-Luc Brylinski and Masaki Kashiwara, Démonstration de la conjecture de Kazhdan-Lusztig sur les modules de Verma, C. R. Acad. Sci. Paris Sér. A-B 291 (1980), no. 6, A373 – A376 (French, with English summary). · Zbl 0457.22012
[6] Thomas P. Branson, Group representations arising from Lorentz conformal geometry, J. Funct. Anal. 74 (1987), no. 2, 199 – 291. · Zbl 0643.58036 · doi:10.1016/0022-1236(87)90025-5 · doi.org
[7] M. W. Baldoni Silva, The unitary dual of \?\?(\?,1), \?\ge 2, Duke Math. J. 48 (1981), no. 3, 549 – 583. · Zbl 0496.22019
[8] Luis G. Casian and David H. Collingwood, Weight filtrations for induced representations of real reductive Lie groups, Adv. in Math. 73 (1989), no. 1, 79 – 146. · Zbl 0676.22011 · doi:10.1016/0001-8708(89)90060-1 · doi.org
[9] David H. Collingwood, Representations of rank one Lie groups, Research Notes in Mathematics, vol. 137, Pitman (Advanced Publishing Program), Boston, MA, 1985. · Zbl 0647.22007
[10] Michael Cowling, Unitary and uniformly bounded representations of some simple Lie groups, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 49 – 128.
[11] Y. Dothan, M. Gell-Mann, and Y. Ne’eman, Series of hadron energy levels as representations of non-compact groups, Phys. Lett. 17 (1965), 148 – 151.
[12] Jacques Dixmier, Représentations intégrables du groupe de De Sitter, Bull. Soc. Math. France 89 (1961), 9 – 41. · Zbl 0217.08801
[13] Thomas Enright, Roger Howe, and Nolan Wallach, A classification of unitary highest weight modules, Representation theory of reductive groups (Park City, Utah, 1982) Progr. Math., vol. 40, Birkhäuser Boston, Boston, MA, 1983, pp. 97 – 143. · Zbl 0535.22012
[14] M. J. Englefield, Group theory and the Coulomb problem, Wiley-Interscience [A division of John Wiley & Sons, Inc.], New York-London-Sydney, 1972. · Zbl 0241.22033
[15] T. J. Enright, R. Parthasarathy, N. R. Wallach, and J. A. Wolf, Unitary derived functor modules with small spectrum, Acta Math. 154 (1985), no. 1-2, 105 – 136. · Zbl 0568.22007 · doi:10.1007/BF02392820 · doi.org
[16] J. Faraut, Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. (9) 58 (1979), no. 4, 369 – 444 (French). · Zbl 0436.43011
[17] Mogens Flensted-Jensen, Analysis on non-Riemannian symmetric spaces, CBMS Regional Conference Series in Mathematics, vol. 61, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. · Zbl 0589.43008
[18] J. Fischer and R. Rączka, Degenerate representation of non-compact unitary groups. II. Continuous series, Comm. Math. Phys. 4 (1967), 8 – 21. · Zbl 0173.30104
[19] C. Fronsdal, Infinite multiplets and the hydrogen atom, Phys. Rev. (3) 156 (1967), 1665-1677.
[20] I. M. Gelfand and M. A. Neumark, Unitäre Darstellungen der klassischen Gruppen, Akademie-Verlag, Berlin, 1957 (German). · Zbl 0077.03405
[21] Kenneth I. Gross, The dual of a parabolic subgroup and a degenerate principal series of \?\?(\?,\?), Amer. J. Math. 93 (1971), 398 – 428. · Zbl 0229.22025 · doi:10.2307/2373384 · doi.org
[22] Alain Guillemonat, On some semispherical representations of an Hermitian symmetric pair of the tubular type. Study in the symmetric algebra, Manuscripta Math. 31 (1980), no. 4, 331 – 361. , https://doi.org/10.1007/BF02320699 Alain Guillemonat, On some semispherical representations of an Hermitian symmetric pair of the tubular type. II. Construction of the unitary representations, Math. Ann. 246 (1979/80), no. 2, 93 – 116. · Zbl 0499.22016 · doi:10.1007/BF01420161 · doi.org
[23] Harish-Chandra, Infinite irreducible representations of the Lorentz group, Proc. Roy. Soc. London. Ser. A. 189 (1947), 372 – 401. · doi:10.1098/rspa.1947.0047 · doi.org
[24] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185 – 243. · Zbl 0051.34002
[25] Takeshi Hirai, On irreducible representations of the Lorentz group of \?-\?\? order, Proc. Japan Acad. 38 (1962), 258 – 262. · Zbl 0111.12204
[26] Takeshi Hirai, Classification and the characters of irreducible representations of \?\?(\?,1), Proc. Japan Acad. 42 (1966), 907 – 912. · Zbl 0216.09204
[27] Roger Howe, On some results of Strichartz and Rallis and Schiffman, J. Funct. Anal. 32 (1979), no. 3, 297 – 303. · Zbl 0408.22018 · doi:10.1016/0022-1236(79)90041-7 · doi.org
[28] Roger Howe, On a notion of rank for unitary representations of the classical groups, Harmonic analysis and group representations, Liguori, Naples, 1982, pp. 223 – 331.
[29] Roger Howe, Remarks on classical invariant theory, Trans. Amer. Math. Soc. 313 (1989), no. 2, 539 – 570. , https://doi.org/10.1090/S0002-9947-1989-0986027-X Roger Howe, Erratum to: ”Remarks on classical invariant theory”, Trans. Amer. Math. Soc. 318 (1990), no. 2, 823. · Zbl 0674.15021
[30] Felix E. Browder , American Mathematical Society centennial publications. Vol. II, American Mathematical Society, Providence, RI, 1992. Mathematics into the twenty-first century. · Zbl 0921.00016
[31] Nathan Jacobson, Lectures in abstract algebra. Vol. II. Linear algebra, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. · Zbl 0053.21204
[32] Kenneth D. Johnson, Composition series and intertwining operators for the spherical principal series. II, Trans. Amer. Math. Soc. 215 (1976), 269 – 283. · Zbl 0295.22016
[33] Hans Plesner Jakobsen and Michele Vergne, Wave and Dirac operators, and representations of the conformal group, J. Functional Analysis 24 (1977), no. 1, 52 – 106. · Zbl 0361.22012
[34] Kenneth D. Johnson and Nolan R. Wallach, Composition series and intertwining operators for the spherical principal series. I, Trans. Amer. Math. Soc. 229 (1977), 137 – 173. · Zbl 0349.43010
[35] David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165 – 184. · Zbl 0499.20035 · doi:10.1007/BF01390031 · doi.org
[36] A. U. Klimyk and A. M. Gavrilik, The representations of the groups \?(\?,1) and \?\?\(_{0}\)(\?,1), Akad. Nauk Ukrain. SSR Inst. Teoret. Fiz., Kiev, 1976 (English, with Russian summary). · Zbl 0337.22020
[37] Anthony W. Knapp, Representation theory of semisimple groups, Princeton Mathematical Series, vol. 36, Princeton University Press, Princeton, NJ, 1986. An overview based on examples. · Zbl 0604.22001
[38] Bertram Kostant, On the existence and irreducibility of certain series of representations, Bull. Amer. Math. Soc. 75 (1969), 627 – 642. · Zbl 0229.22026
[39] Stephen S. Kudla and Stephen Rallis, Degenerate principal series and invariant distributions, Israel J. Math. 69 (1990), no. 1, 25 – 45. · Zbl 0708.22005 · doi:10.1007/BF02764727 · doi.org
[40] M. Kashiwara and M. Vergne, On the Segal-Shale-Weil representations and harmonic polynomials, Invent. Math. 44 (1978), no. 1, 1 – 47. · Zbl 0375.22009 · doi:10.1007/BF01389900 · doi.org
[41] M. Kashiwara and M. Vergne, Functions on the Shilov boundary of the generalized half plane, Noncommutative harmonic analysis (Proc. Third Colloq., Marseille-Luminy, 1978) Lecture Notes in Math., vol. 728, Springer, Berlin, 1979, pp. 136 – 176. · Zbl 0416.22006
[42] George W. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193 – 221. · Zbl 0051.01901 · doi:10.2307/1969786 · doi.org
[43] V. F. Molcanov, Analogue of the Plancherel Formula for hyperboloids, Soviet Math. Doklady 9 (1968), 1387-1385. · Zbl 0176.44304
[44] Линейные представления группы Лоренца., Государств. Издат. Физ.-Мат. Лит., Мосцощ, 1958 (Руссиан).
[45] Kyo Nishiyama, Algebraic structures on virtual characters of a semisimple Lie group, Representations of Lie groups, Kyoto, Hiroshima, 1986, Adv. Stud. Pure Math., vol. 14, Academic Press, Boston, MA, 1988, pp. 417 – 468. · Zbl 0744.22015
[46] Enrico Onofri, Dynamical quantization of the Kepler manifold, J. Mathematical Phys. 17 (1976), no. 3, 401 – 408. · Zbl 0365.53014 · doi:10.1063/1.522907 · doi.org
[47] Bent Ørsted, Conformally invariant differential equations and projective geometry, J. Funct. Anal. 44 (1981), no. 1, 1 – 23. · Zbl 0507.58048 · doi:10.1016/0022-1236(81)90002-1 · doi.org
[48] Stephen M. Paneitz and Irving E. Segal, Analysis in space-time bundles. I. General considerations and the scalar bundle, J. Funct. Anal. 47 (1982), no. 1, 78 – 142. · Zbl 0535.58019 · doi:10.1016/0022-1236(82)90101-X · doi.org
[49] Stephen M. Paneitz and Irving E. Segal, Analysis in space-time bundles. II. The spinor and form bundles, J. Funct. Anal. 49 (1982), no. 3, 335 – 414. · Zbl 0535.58020 · doi:10.1016/0022-1236(82)90073-8 · doi.org
[50] Stephen M. Paneitz, Analysis in space-time bundles. III. Higher spin bundles, J. Funct. Anal. 54 (1983), no. 1, 18 – 112. · Zbl 0535.58021 · doi:10.1016/0022-1236(83)90041-1 · doi.org
[51] Joe Repka, Tensor products of holomorphic discrete series representations, Canad. J. Math. 31 (1979), no. 4, 836 – 844. · Zbl 0373.22006 · doi:10.4153/CJM-1979-079-9 · doi.org
[52] Wulf Rossmann, Analysis on real hyperbolic spaces, J. Funct. Anal. 30 (1978), no. 3, 448 – 477. · Zbl 0395.22014 · doi:10.1016/0022-1236(78)90065-4 · doi.org
[53] S. Rallis and G. Schiffmann, Discrete spectrum of the Weil representation, Bull. Amer. Math. Soc. 83 (1977), no. 2, 267 – 270. · Zbl 0397.22009
[54] Siddhartha Sahi, The Capelli identity and unitary representations, Compositio Math. 81 (1992), no. 3, 247 – 260. · Zbl 0758.22008
[55] Birgit Speh, Degenerate series representations of the universal covering group of \?\?(2,2), J. Funct. Anal. 33 (1979), no. 1, 95 – 118. · Zbl 0415.22012 · doi:10.1016/0022-1236(79)90019-3 · doi.org
[56] Birgit Speh, The unitary dual of \?\?(3,\?) and \?\?(4,\?), Math. Ann. 258 (1981/82), no. 2, 113 – 133. · Zbl 0483.22005 · doi:10.1007/BF01450529 · doi.org
[57] A. Salam and J. Strathdee, Relativistic \( {U(6,6)}\) Theory, Phys. Rev. 148 (1966), 1352-1358.
[58] Henrik Schlichtkrull, Eigenspaces of the Laplacian on hyperbolic spaces: composition series and integral transforms, J. Funct. Anal. 70 (1987), no. 1, 194 – 219. · Zbl 0617.43005 · doi:10.1016/0022-1236(87)90130-3 · doi.org
[59] Jirō Sekiguchi, Eigenspaces of the Laplace-Beltrami operator on a hyperboloid, Nagoya Math. J. 79 (1980), 151 – 185. · Zbl 0468.35074
[60] R. Stanley, Enumerative Combinatorics, vol. 1, Wadsworth and Cole, Monterey, CA, 1986. · Zbl 0608.05001
[61] Robert S. Strichartz, Harmonic analysis on hyperboloids, J. Functional Analysis 12 (1973), 341 – 383. · Zbl 0253.43013
[62] Robert S. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), no. 1, 51 – 148. · Zbl 0694.43008 · doi:10.1016/0022-1236(89)90004-9 · doi.org
[63] Birgit Speh and David A. Vogan Jr., Reducibility of generalized principal series representations, Acta Math. 145 (1980), no. 3-4, 227 – 299. · Zbl 0457.22011 · doi:10.1007/BF02414191 · doi.org
[64] Shlomo Sternberg and Joseph A. Wolf, Hermitian Lie algebras and metaplectic representations. I, Trans. Amer. Math. Soc. 238 (1978), 1 – 43. · Zbl 0386.22010
[65] A. Tengstrand, Distributions invariant under an orthogonal group of arbitrary signature, Math. Scand. 8 (1960), 201 – 218. · Zbl 0104.33402 · doi:10.7146/math.scand.a-10610 · doi.org
[66] Reiji Takahashi, Sur les représentations unitaires des groupes de Lorentz généralisés, Bull. Soc. Math. France 91 (1963), 289 – 433 (French). · Zbl 0196.15501
[67] N. Ja. Vilenkin, Special functions and the theory of group representations, Translated from the Russian by V. N. Singh. Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R. I., 1968.
[68] David A. Vogan Jr., Gel\(^{\prime}\)fand-Kirillov dimension for Harish-Chandra modules, Invent. Math. 48 (1978), no. 1, 75 – 98. · Zbl 0389.17002 · doi:10.1007/BF01390063 · doi.org
[69] -, Representations of real reductive groups, Progress in Math., vol. 15, Birkhauser, Boston, MA, 1981. · Zbl 0469.22012
[70] David A. Vogan, Irreducible characters of semisimple Lie groups. III. Proof of Kazhdan-Lusztig conjecture in the integral case, Invent. Math. 71 (1983), no. 2, 381 – 417. · Zbl 0505.22016 · doi:10.1007/BF01389104 · doi.org
[71] David A. Vogan Jr., Unitary representations of reductive Lie groups, Annals of Mathematics Studies, vol. 118, Princeton University Press, Princeton, NJ, 1987. · Zbl 0626.22011
[72] Nolan R. Wallach, Real reductive groups. I, Pure and Applied Mathematics, vol. 132, Academic Press, Inc., Boston, MA, 1988. · Zbl 0666.22002
[73] Компактные группы Ли и их представления., Издат. ”Наука”, Мосцощ, 1970 (Руссиан). Д. П. Žелобенко, Цомпацт Лие гроупс анд тхеир репресентатионс, Америцан Матхематицал Социеты, Провиденце, Р.И., 1973. Транслатед фром тхе Руссиан бы Исраел Програм фор Сциентифиц Транслатионс; Транслатионс оф Матхематицал Монограпхс, Вол. 40.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.