×

Eigenvalues of the Dirac operator on compact Kähler manifolds. (English) Zbl 0794.53042

Using Kählerian twistor operators the author gives new proofs of known lower estimations for the first eigenvalue of the Dirac operator on compact spin Kähler manifolds.
Reviewer: H.Baum (Berlin)

MSC:

53C55 Global differential geometry of Hermitian and Kählerian manifolds
58J50 Spectral problems; spectral geometry; scattering theory on manifolds
58J20 Index theory and related fixed-point theorems on manifolds
Full Text: DOI

References:

[1] [ABS] Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules, Topology 3. Suppl. 1, 3–38 (1964) · Zbl 0146.19001 · doi:10.1016/0040-9383(64)90003-5
[2] [BFGK] Baum, H., Friedrich, T. Grunewald, R., Kath, I.: Twistor and killing spinors on Riemannian manifolds. Seminarbericht Nr.108, Humboldt-Universität zu Berlin (1990) · Zbl 0705.53004
[3] [Fr1] Friedrich, T.: Der erste Eigenwert des Dirac-Operators einer kompakten Riemannschen Mannigfaltigkeit nichtnegativer Skalar-Krümmung. Math. Nach.97, 117–146 (1980) · Zbl 0462.53027 · doi:10.1002/mana.19800970111
[4] [Fr2] Friedrich, T.: The classification of 4-dimensional Kähler manifolds with small eigenvalue of the Dirac Operator. Preprint91-34, Humboldt-Universität zu Berlin (1991)
[5] [Hi1] Hijazi, O.: Opérateurs de Dirac sur les variétés riemanniennes: Minoration des valeurs propres. Thèse de 3ème Cycle, Ecole Polytechnique (1984)
[6] [Hi2] Hijazi, O.: A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors. Commun. Math. Phys.104, 151–162 (1986) · Zbl 0593.58040 · doi:10.1007/BF01210797
[7] [Hi3] Hijazi, O.: Propriétés Spectrales de l’Opérateur de Dirac. Habilitation à Diriger des Recherches, Université de Nantes, (1992)
[8] [HM] Hijazi, O., Milhorat, J.L.: Minoration de la première valeur propre de l’opérateur de Dirac sur les variétés Spin Kähler-quaternioniennes. Preprint, Université de Nantes (1992)
[9] [Hit] Hitchin, N.: Harmonic spinors. Adv. in Math.14, 1–55 (1974) · Zbl 0284.58016 · doi:10.1016/0001-8708(74)90021-8
[10] [Ki 1] Kirchberg, K.D.: An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds with positive scalar curvature. Ann. Glob. Anal. Geom.4, 291–326 (1986) · Zbl 0629.53058 · doi:10.1007/BF00128050
[11] [Ki 2] Kirchberg, K.D.: Compact six-dimensional Kähler spin manifolds of positive scalar curvature with the smallest first eigenvalue of the Dirac operator. Math. Ann.282, 157–176 (1988) · Zbl 0628.53061 · doi:10.1007/BF01457018
[12] [Ki 3] Kirchberg, K.D.: The first eigenvalue of the Dirac operator on Kähler manifolds. J. Geom. Phys.7, 449–468 (1990). · Zbl 0734.53050 · doi:10.1016/0393-0440(90)90001-J
[13] [Ki 4] Kirchberg, K.D.: Properties of Kählerian twistor-spinors and vanishing theorems. Math. Ann.293, 349–369 (1992) · doi:10.1007/BF01444720
[14] [Mi] Michelsohn, M.L.: Clifford and spinor cohomology of Kähler manifolds. Am. J. Math.102, 1083–1146 (1980) · Zbl 0462.53035 · doi:10.2307/2374181
[15] [LM] Lawson, H.B., Michelsohn, M.L.: Spin Geometry. Princeton, NJ: Princeton University Press 1989 · Zbl 0688.57001
[16] [Li 1] Lichnerowicz, A.: Spineurs harmoniques. C.R. Acad. Sci. Paris257 7–9 (1963) · Zbl 0136.18401
[17] [Li 2] Lichnerowicz, A.: Spin manifolds, killing spinors and universality of the Hijazi inequality. Lett. Math. Phys.13, 331–344 (1987) · Zbl 0624.53034 · doi:10.1007/BF00401162
[18] [Li 3] Lichnerowicz, A.: La première valeur propre de lopérateur de Dirac pour une variété kählérienne et son cas limite. C.R. Acad. Sci. Paris311, 717–722 (1990) · Zbl 0713.53040
[19] [Li 4] Lichnerowicz, A.: Spineurs harmoniques et spineurs-twisteurs en géométrie kählérienne et conformément kählérienne. C.R. Acad. Sci. Paris311, 883–887 (1990) · Zbl 0714.53041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.