×

Multilevel large deviations and interacting diffusions. (English) Zbl 0794.60015

Let \((\xi^ N)\) be a sequence of random variables with values in a topological space which satisfy the large deviation principle. For each \(M\) and each \(N\), let \(\Xi^{M,N}\) denote the empirical measure associated with \(M\) independent copies of \(\xi^ N\). As a main result, we show that \((\Xi^{M,N})\) also satisfies the large deviation principle as \(M,N \to \infty\). We derive several representations of the associated rate function. These results are then applied to empirical measure processes \(\Xi^{M,N} (t)=M^{-1} \sum^ M_{i=1} \delta_{\xi^ N_ i(t)}\), \(0 \leq t \leq T\), where \((\xi^ N_ 1(t), \dots, \xi^ N_ M(t))\) is a system of weakly interacting diffusions with noise intensity \(1/N\). This is a continuation of our previous work on the McKean-Vlasov limit and related hierarchical models [Stochastics 20, 247- 308 (1987; Zbl 0613.60021) and Stochastic calculus in applications, Proc. Symp. Cambridge/UK 1987, Pitman Res. Notes Math. Ser. 197, 29-54 (1988; Zbl 0668.60067)].
Reviewer: D.A.Dawson

MSC:

60F10 Large deviations
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J60 Diffusion processes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Azencott, R.: Grandes deviations et applications. In: Ecole d’Eté de Probabilités de Saint-Flour VIII-1978. (Lect. Notes Math., Vol. 774, pp. 2-176) Berlin Heidelberg New York: Springer 1980
[2] Billingsley, P.: Convergence of probability measures. New York: Wiley 1968 · Zbl 0172.21201
[3] Crandall, M. G., Lions, P.-L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc.277, 1-42 (1983) · Zbl 0599.35024 · doi:10.1090/S0002-9947-1983-0690039-8
[4] Dawson, D. A., Gärtner, J.: Large deviations from the McKean-Vlasov limit for weakly interacting diffusions. Stochastics20, 247-308 (1987) · Zbl 0613.60021
[5] Dawson, D. A., Gärtner, J.: Long time behaviour of interacting diffusions. In: Norris, J. R. (ed.) Stochastic calculus in application. (Proc. Cambridge Symp., 1987, pp. 29-54) Harlow Essex London New York: Longman 1988
[6] Dawson, D. A., Gärtner, J.: Large deviations, free energy functional and quasi-potential for a mean field model of interacting diffusions. Mem. Am. Math. Soc.78, (1989) · Zbl 0677.60106
[7] Ekeland, I., Temam, R.: Convex analysis and variational problems. Amsterdam Oxford: North Holland 1976 · Zbl 0322.90046
[8] Freidlin, M. I., Wentzell, A. D.: Random perturbations of dynamical systems. Berlin Heidelberg New York: Springer 1984 · Zbl 0522.60055
[9] Gärtner, J.: On the McKean-Vlasov limit for interacting diffusions. Math. Nachr.137, 197-248 (1988) · Zbl 0678.60100 · doi:10.1002/mana.19881370116
[10] Kellerer, H. G.: Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheor. Verw. Geb.67, 399-432 (1984) · Zbl 0535.60002 · doi:10.1007/BF00532047
[11] Lions, P.: Generalized solutions of Hamilton-Jacobi equations. Boston, London, Melbourne: Pitman 1982 · Zbl 0497.35001
[12] Postnikov, M. M.: Introduction to Morse theory (in Russian) Moscow: Nauka 1971
[13] Scheutzow, M.: Uniqueness and non-uniqueness of solutions of Vlasov-McKean equations. J. Aust. Math. Soc. Ser. A43, 246-256 (1987) · Zbl 0625.60062 · doi:10.1017/S1446788700029384
[14] Schwartz, L.: Radon measures on arbitrary topological spaces and cylindrical measures. Oxford: Oxford University Press 1973 · Zbl 0298.28001
[15] Stroock, D. W., Varadhan, S. R. S.: Multidimensional diffusion processes. Berlin Heidelberg New York: Springer 1979 · Zbl 0426.60069
[16] Topsøe, F.: Topology and measure. (Lect. Notes Math., vol. 133) Berlin Heidelberg New York: Springer 1979 · Zbl 0448.28001
[17] Varadhan, S. R. S.: Large deviations and applications. CBMS-NSF Regional Conference Series in Appl. Math., vol. 46 Philadelphia: SIAM 1984
[18] Wentzell, A. D. Limit theorems on large deviations for Markov stochastic processes. Dordrecht: Kluwer Academic Publisher 1990 · Zbl 0743.60029
[19] Wets, R. J. B.: Convergence of convex functions, variational inequalities and convex optimization problems. In: Cottle, R. W., Giannessi, F., Lions, J. L. (eds.) Variational inequalities and complementarity problems, pp. 375-403. Chichester: Wiley 1980 · Zbl 0481.90066
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.