zbMATH — the first resource for mathematics

Asymptotic expansion of stochastic flows. (English) Zbl 0794.60054
We study the asymptotic expansion in small time of the solution of a stochastic differential equation. We obtain a universal and explicit formula in terms of Lie brackets and iterated stochastic Stratonovich integrals. This formula contains the reslts of H. Doss [Ann. Inst. H. Poincaré, n. Sér., Sect. B 13, 99-125 (1977; Zbl 0359.60087)], H. J. Sussmann [Ann. Probab. 6, 19-41 (1978; Zbl 0391.60056)], M. Fliess and D. Normand-Cyrot [Séminaire de probabilités XVI, Univ. Strasbourg 1980/81, Lect. Notes Math. 920, 257-267 (1982; Zbl 0495.60064)], A. J. Krener and C. Lobry [Stochastics 4, 193- 203 (1981; Zbl 0452.60069)], Y. Yamato [Z. Wahrscheinlichkeitstheorie Verw. Geb. 47, 213-229 (1979; Zbl 0427.60069)] and H. Kunita [Séminaire de probabilités XIV, 1978/79, Lect. Notes Math. 784, 282-304 (1980; Zbl 0438.60047)] in the nilpotent case, and extends to general diffusions the representation given by G. Ben Arous [Probab. Theory Relat. Fields 81, No. 1, 29-77 (1989; Zbl 0639.60062)] for invariant diffusions on a Lie group. The main tool is an asymptotic expansion for deterministic ordinary differential equations, given by R. S. Strichartz [J. Funct. Anal. 72, 320-345 (1987; Zbl 0623.34058)].
Reviewer: F.Castell (Orsay)

60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
Full Text: DOI
[1] Azencott, R.: Formule de Taylor stochastique et développements asymptotiques d’intégrales de Feynman. In: Azema, J., Yor, M. (eds.) Séminaire de probabilités XVI. (Lect. Notes Math., vol. 921, pp. 237-284) Berlin Heidelberg New York: Springer 1982
[2] Azencott, R.: Densités des diffusions en temps petit: développements asymptotiques. In: Azema, J., Yor, M. (eds.) Séminaire de probabilités XVIII. (Lect. Notes Math., vol. 1059, pp. 402-498) Berlin Heidelberg New York: Springer 1984
[3] Ben Arous, G.: Flots et séries de Taylor stochastiques. Probab. Theory Relat. Fields81, 29-77 (1989) · Zbl 0639.60062
[4] Ben Arous, G.: Développement asymptotique du noyau de la chaleur hypoelliptique sur la diagonale. Ann. Inst. Fourier39, 73-99 (1989) · Zbl 0659.35024
[5] Bourbaki, N.: Eléments de mathématiques. Groupes et algèbres de Lie, tome 2. Paris: Hermann 1972 · Zbl 0244.22007
[6] Doss, H.: Lien entre équations différentielles stochastiques et ordinaires. Ann. Inst. Henri Poincaré, Nouv. Ser., Sect. B13, 99-125 (1977) · Zbl 0359.60087
[7] Fliess, M., Normand-Cyrot, D.: Algèbres de Lie nilpotentes, formule de Baker-Campbell-Hausdorff et intégrales itérées de K.T. Chen. In: Azema, J., Yor, M. (eds.) Séminaire de probabilités XVI. (Lect. Notes Math., vol. 920, pp. 257-267) Berlin Heidelberg New York: Springer 1982
[8] Hu, Y.Z.: Série de Taylor stochastique et formule de Campbell-Hausdorff, d’après Ben Arous. In: Azema, J., Meyer, P.A., Yor, M. (eds.) Séminaire de probabilités XXVI, 1991-1992 (Lect. Notes Math., vol. 1526, pp. 579-586) Berlin Heidelberg New York: Springer 1992
[9] Jacobson, N.: Lie algebras. New York: Interscience 1962 · Zbl 0121.27504
[10] Krener, A.J., Lobry, C.: The complexity of stochastic differential equations. Stochastics4, 193-203 (1979) · Zbl 0452.60069
[11] Kunita, H.: On the representation of solutions of stochastic differential equations. In: Azema, J., Yor, M. (eds.) Séminaire de probabilités XIV. (Lect. Notes Math., vol. 784, pp. 282-304) Berlin Heidelberg New York: Springer 1980 · Zbl 0438.60047
[12] Kunita, H.: On the decomposition of solutions of stochastic differential equations. In: Williams, D. (ed.) Stochastic integrals. Proceedings, LMS Durham Symposium 1980. (Lect. Notes Math., vol. 851, pp. 213-255) Berlin Heidelberg New York: Springer 1981 · Zbl 0438.60047
[13] Léandre, R.: Applications quantitatives et géométriques du calcul de Malliavin. In: Métivier, M., Watanabe, S. (eds.) Stochastics integrals. (Lect. Notes Math., vol. 1322, pp. 109-133) Berlin Heidelberg New York: Springer 1988
[14] Strichartz, R.S.: The Campbell-Baker-Hausdorff-Dynkin formula and solutions of differential equations. J. Funct. Anal.72, 320-345 (1987) · Zbl 0623.34058
[15] Sussmann, H.: On the gap between deterministic and stochastic ordinary differential equations. Ann. Probab.6, 19-41 (1978) · Zbl 0391.60056
[16] Takanobu, S.: Diagonal short time asymptotics of heat kernels for certain degenerate second order differential operators of Hörmander type. Publ. Res. Inst. Math. Sci.24, 169-203 (1988) · Zbl 0677.35019
[17] Yamato, Y.: Stochastic differential equations and nilpotent Lie algebras. Z. Wahrscheinlichkeitstheor. Verw. Geb.47, 213-229 (1979) · Zbl 0427.60069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.