×

Outfix and infix codes and related classes of languages. (English) Zbl 0794.68087

The authors define and study several classes of codes. Two of them, called infix and outfix, are defined by an extremal property with respect to the block ordering.

MSC:

68Q45 Formal languages and automata
94A45 Prefix, length-variable, comma-free codes
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berstel, J.; Perrin, D., Theory of codes, (1985), Academic Press New York · Zbl 1022.94506
[2] Day, P.H.; Shyr, H.J., Languages defined by some partial orders, Soochow J. math., 9, 53-62, (1983) · Zbl 0537.68078
[3] Guo, Y.Q.; Shyr, H.J.; Thierrin, G., E-convex infix codes, Order, 3, 55-59, (1986) · Zbl 0614.20045
[4] Guo, Y.Q.; Thierrin, G.; Zhang, S.Z., Semaphore codes and ideals, J. inform. optim. sci., 9, 73-83, (1988) · Zbl 0646.68090
[5] Hopcroft, J.E.; Ullman, F.D., Introduction to automata theory, languages, and computation, (1979), Addison-Wesley Reading, MA · Zbl 0426.68001
[6] Ito, M.; Jürgensen, H.; Shyr, H.J.; Thierrin, G., Anti-commutative languages and n-codes, Discrete appl. math., 24, 187-196, (1989) · Zbl 0679.68140
[7] Ito, M.; Jürgensen, H.; Shyr, H.J.; Thierrin, G., n-prefix-suffix languages, Internat. J. comput. math., 30, 37-56, (1989) · Zbl 0681.68097
[8] Jürgensen, H.; Shyr, H.J.; Thierrin, G., Codes and compatible partial orders on free monoids, (), 323-333 · Zbl 0611.06012
[9] Jürgensen, H.; Thierrin, G., Infix codes, (), 25-29 · Zbl 0637.68086
[10] Katsura, M.; Shyr, H.J., Decomposition of languages into disjunctive outfix codes, (), 172-175 · Zbl 0644.68100
[11] Lothaire, M., Combinatorics on words, (1983), Addison-Wesley Reading, MA · Zbl 0514.20045
[12] Reis, C.M.; Thierrin, G., Reflective star languages and codes, Inform. control, 42, 1-9, (1979) · Zbl 0408.68068
[13] Schein, B.M., Homomorphisms and subdirect decompositions of semigroups, Pacific J. math., 17, 529-547, (1966) · Zbl 0197.01603
[14] Schützenberger, M.P., On an application of semigroup methods to some problems in coding, IRE trans. inform. theory, IT-2, 47-60, (1956)
[15] Shyr, H.J., Free monoids and languages, () · Zbl 0746.20050
[16] Shyr, H.J.; Thierrin, G., Codes and binary relations, (), 180-188 · Zbl 0363.94019
[17] Shyr, H.J., Ordered catenation and regular free disjunctive languages, Inform. control., 46, 257-269, (1980) · Zbl 0453.68046
[18] Thierrin, G., Hypercodes, right-convex languages and their syntactic monoids, (), 255-258 · Zbl 0476.20042
[19] Valkema, E., Zur charakterisierung formaler sprachen durch halbgruppen, Dissertation, (1974), Kiel
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.