zbMATH — the first resource for mathematics

Restrictions of the special representation of \(\text{Aut}(\text{tree}_ 3)\) to two cocompact subgroups. (English) Zbl 0795.22004
This paper deals with a special problem in the harmonic analysis for groups acting on trees. Given a homogeneous tree \(T\) of degree 3 (i.e., a connected infinite combinatorial graph with no loop and with three edges leaving each vertex), let \(G\) be the automorphism group of \(T\). With regard to its representation theory this group is quite analogous to the special linear group \(SL_ 2(\mathbb{R})\); the irreducible unitary representations are classified. Given a discrete cocompact subgroup \(\Gamma\) of \(G\) the paper exhibits particular decompositions of the restriction to \(\Gamma\) of the two special discrete series representations of \(G\) for two specific choices of \(\Gamma\).

22D10 Unitary representations of locally compact groups
22E40 Discrete subgroups of Lie groups
20E08 Groups acting on trees
22E35 Analysis on \(p\)-adic Lie groups
43A65 Representations of groups, semigroups, etc. (aspects of abstract harmonic analysis)
Full Text: DOI
[1] M. Atiyah, Elliptic operators, discrete groups and von Neumann algebras , Astérisque 32 - 33 (1976), 43-72. · Zbl 0323.58015
[2] M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups , Invent. Math. 42 (1977), 1-62. · Zbl 0373.22001 · doi:10.1007/BF01389783 · eudml:142495
[3] W. Betori and M. Pagliacci, Harmonic analysis for groups acting on trees , Boll. Un. Mat. Ital. B3 (1984), 333-349. · Zbl 0579.43014
[4] C. Cecchini and A. Figà-Talamanca, Projections of uniqueness for \(L^p(G)\) , Pacific J. Math. 51 (1974), 37-47. · Zbl 0252.43007 · doi:10.2140/pjm.1974.51.37
[5] J. Dixmier, Les algèbres d’opérateurs dans l’espace Hilbertien ( Algèbres de von Neumann ), Gauthier-Villars, Paris, 1957. · Zbl 0088.32304
[6] ——–, Les \(C^*\)-algèbres et leurs representations , Gauthier-Villars, Paris, 1969. · Zbl 0174.18601
[7] A. Figà-Talamanca and M. Picardello, Spherical functions and harmonic analysis on free groups , J. Funct. Anal. 47 (1982), 281-304. · Zbl 0489.43008 · doi:10.1016/0022-1236(82)90108-2
[8] R. Godement, Fonctions de type positif et la théorie des groupes , Trans. Amer. Math. Soc. 63 (1949), 1-84. · Zbl 0031.35903 · doi:10.2307/1990636
[9] F. Goodman, P. de la Harpe and V. Jones, Finite von Neumann algebras with finite dimensional center , manuscript, 1987.
[10] U. Haagerup, An example of a non-nuclear \(C^*\)-algebra which has the metric approximation property , Invent. Math. 50 (1979), 279-293. · Zbl 0408.46046 · doi:10.1007/BF01410082 · eudml:142617
[11] A. Iozzi and M. Picardello, Graphs and convolution operators , in Topics in modern harmonic analysis , I.N.d.A.M., Roma, 1983, pp. 187-208.
[12] ——–, Spherical functions on symmetric graphs , in Conference in harmonic analysis , Lecture Notes in Mathematics 992, Springer-Verlag, Berlin, Heidelberg, New York, 1983, pp. 344-386.
[13] A.G. Kuroš, The theory of groups , vol. II, Chelsea Publ. Co., New York, 1956.
[14] G. Kuhn and P.M. Soardi, The Plancherel measure for polygonal graphs , Ann. Mat. Pura Appl. 134 (1983), 393-401. · Zbl 0536.43021 · doi:10.1007/BF01773513
[15] G.I. Ol’shanskii, Representations of groups of automorphisms of trees , Uspekhi Mat. Nauk 30 (1975), 169-170.
[16] ——–, Classification of irreducible representations of groups of automorphisms of Bruhat-Tits trees , J. Funct. Anal. Appl. 11 (1977), 26-34. · Zbl 0371.22014 · doi:10.1007/BF01135529
[17] Pimsner and D. Voiculescu, \(K\)-groups of reduced crossed products by free groups , J. Operator Theory 8 (1982), 131-156. · Zbl 0533.46045
[18] T. Steger, Restrictions to cocompact subgroups of representations of Aut(Tree), in preparation. · Zbl 0795.22004
[19] A. Trenholme, Maximal abelian subalgebras of function algebras associated with free products , · Zbl 0665.46049 · doi:10.1016/0022-1236(88)90017-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.