×

Floquet operators without absolutely continuous spectrum. (English) Zbl 0795.47032

Summary: We extend some recent results of J. S. Howland [ibid. 50, No. 3, 309-334 (1989; Zbl 0689.34022 and 689.34023)], concerning the absence of absolutely continuous spectrum of Floquet operators for time periodic perturbations of discrete Hamiltonians with increasing gaps. Our results cover the case of \(n\) coupled pulsed rotors (the case \(n=1\) has been considered by Bellissard): \[ {\mathbf H}(t)= -{d^ 2\over d\theta^ 2} \text{\textbf{1}}_ n+{\mathbf V}(\theta,t) \] on \(0< \theta< 2\pi\) with periodic boundary conditions, and \(V_{i,j}(\theta,t)\in {\mathcal C}^ 2\); \(i,j=1,\dots,n\).

MSC:

47E05 General theory of ordinary differential operators
47A10 Spectrum, resolvent
34B15 Nonlinear boundary value problems for ordinary differential equations

References:

[1] J.S. Howland , Floquet Operators with Singular Spectrum , Ann. Inst. Henri Poincaré , Vol. 49 , 1989 , pp. 309 - 323 ; J.S. Howland , Floquet Operators with Singular Spectrum. II . Ann. Inst. Poincaré , Vol. 49 , 1989 , pp. 325 - 334 . Numdam | MR 1017967 | Zbl 0689.34022 · Zbl 0689.34022
[2] J. Bellissard , Stability and Instability in Quantum Mechanics , In Trends and Developments in the Eighties , Albeverio and Blanchard Eds ., World Scientific , Singapore , 1985 . MR 853743 | Zbl 0584.35024 · Zbl 0584.35024
[3] K. Yajima , Scattering Theory for Schrödinger Equations with Potential Periodic in Time , J. Math. Soc. Japan , Vol. 29 , 1977 , pp. 729 - 743 . Article | MR 470525 | Zbl 0356.47010 · Zbl 0356.47010 · doi:10.2969/jmsj/02940729
[4] J.S. Howland , Scattering Theory for Hamiltonians Periodic in Time , Indiana J. Math. , Vol. 28 , 1978 , pp. 471 - 494 . MR 529679 | Zbl 0444.47010 · Zbl 0444.47010 · doi:10.1512/iumj.1979.28.28033
[5] G. Nenciu , Asymptotic Invariant Subspaces, Adiabatic Theorems and Block Diagonalisation , in Recent Developments in Quantum Mechanics , A. BOUTET DE MONVEL et al. Eds., Kluver Academic Publishers , Dordrecht , 1991 . MR 1189402 | Zbl 0726.34077 · Zbl 0726.34077
[6] G. Nenciu , Linear Adiabatic Theory. Exponential Estimates , Commun. Math. Phys. , Vol. 152 , 1993 , pp. 479 - 496 . Article | MR 1213299 | Zbl 0768.34038 · Zbl 0768.34038 · doi:10.1007/BF02096616
[7] M.S. Birman , M.G. Krein , On the Theory of Wave and Scattering Operators , Dokl. Acad. Nauk S.S.S.R. , Vol. 144 , 1962 , pp. 475 - 478 (English translation: Soviet Math. , Vol. 3 , 1962 , pp. 740 - 744 . MR 139007 | Zbl 0196.45004 · Zbl 0196.45004
[8] S.G. Krein , Linear Differential Equations in Banach Spaces , AMS Translations of Mathematical Monographs , Vol. 29 , Providence , 1971 . MR 342804 · Zbl 0236.47034
[9] T. Kato , Perturbation Theory for Linear Operators , Springer , Berlin , 1976 . MR 407617
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.