# zbMATH — the first resource for mathematics

Some remarks on the regularity of minima of anisotropic integrals. (English) Zbl 0795.49025
The authors state appropriate growth conditions to be imposed on the function $$f$$ to ensure that a local minimizer $$u(x)$$ of the functional (1) $$\int_ \Omega f(x,v(x),Dv(x))dx$$ satisfies certain local boundedness conditions. Here $$\Omega$$ is a bounded open set in $$\mathbb{R}^ n$$ and $$f$$ is defined on $$\Omega\times\mathbb{R}\times \mathbb{R}^ n$$. It is assumed that $$f$$ satisfies $\sum | z_ i|^{q_ i}- c_ 1| s|^ r- g(x)\leq f(x,s,z)\leq c_ 2\Bigl[\sum | z_ i|^{q_ i}+ | s|^ r+ g(x)\Bigr],\tag{2}$ where $$1\leq q_ i\leq \bar q^*$$, $$1\leq r\leq \bar q^*$$, $$\bar q= n(\sum q^{-1}_ i)^{-1}$$, $$\bar q^*= n\bar q/(n-\bar q)$$ if $$\bar q< n$$ or any $$p$$ if $$\bar q\geq n$$, all summations extend over $$i= 1,2,\dots,n$$, and $$g(x)$$ is a non-negative function in $$L^ p(\Omega)$$, where $$p>\max(1,n/\bar q)$$. Let $$W^{1,(q_ i)}(\Omega)= \{u\in W^{1,1}(\Omega)$$, $$D_ i u\in L^{q_ i}\}$$ then if $$f$$ satisfies (2) and if $$u\in W^{1,(q_ i)}(\Omega)$$ is a local minimizer of (1) then $$u\in L^ \infty_{\text{loc}}(\Omega)$$. The authors also consider the functional (3) $$\int_ \Omega f(Dv)dx$$, where $$f$$ is now a $$C^ 2$$ function from $$\mathbb{R}^ n$$ to $$\mathbb{R}$$ satisfying $\sum | z_ i|^{q_ i}\leq f(z)\leq c_ 1\Bigl(1+ \sum| z_ i|^{q_ i}\Bigr),\tag{4}$
$c_ 2| \xi|^ 2\leq \sum f_{z_ i z_ j}\xi_ i \xi_ j\leq c_ 2\Bigl(1+\sum | z_ i|^{q_ i-2}| \xi|^ 2\Bigr)\tag{5}$ for any $$\xi\in \mathbb{R}^ n$$, where $$2\leq q_ i\leq 2n/(n- 2)$$ if $$n>2$$ ($$q_ i\geq 2$$ if $$n=2$$) and $$q_ 1\leq q_ 2\leq q_ n$$, $$q_{n-1}< 2n/(n- 2)$$. Then if $$u\in W^{1,(q_ i)}(\Omega)$$ is a local minimizer of (3) and $$f$$ satisfies (4), (5) then $$u\in W^{1,\infty}_{\text{loc}}(\Omega)\cap W^{2,2}_{\text{loc}}(\Omega)$$.

##### MSC:
 49N60 Regularity of solutions in optimal control
Full Text:
##### References:
  Acerbi E, to appear on J. of Diff. Equations  Boccardo L, Boll. Un. Mat. Ital. 4 pp 219– (1990)  Benedetto E.Di, Ann. Inst. H. Poin. An. Non Linaire I pp 295– (1984)  DOI: 10.1007/BF02567909 · Zbl 0722.49012  DOI: 10.1002/cpa.3160430505 · Zbl 0727.49021  Giaquinta M, Annals of Mathematics Studies 105 (1983)  DOI: 10.1007/BF01158049 · Zbl 0638.49005  DOI: 10.1007/BF02392725 · Zbl 0494.49031  Giaquinta M, Inst. H. Poin. An. Kon Linaire I pp 79– (1984)  Gilbarg D, Elliptic partial differential equations of second order (1987)  Hong M.C., to appear in Boll. Un. Mat. Ital.  Ladyzhenskaya, O.A., Ural’tseva, N.N. and Marcellini, P. 1968. ”Un exemple de solution discontinue d’un probléme variationnel dans le cas scalaire”. Acad. Press. Preprint, 1987  DOI: 10.1007/BF00251503 · Zbl 0667.49032  DOI: 10.1016/0022-0396(91)90158-6 · Zbl 0724.35043  T.B hattacharaya, F.Leonet ti - W 2,2 -regularity for weak solutions of elliptic systems with non standard growth, preprint!  Stroffolini B, Boll. Un. Mat. Ital. 5 (1991)  Troisi M, Ricerche di Mat. 18 pp 3– (1969)  Troisi M., Ricerche di Mat 18 pp 3– (1969)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.