Analogues of Riemann tensors for the odd metric on supermanifolds. (English) Zbl 0795.53025

Author’s abstract: “Structure functions constitute the complete set of obstructions to the integrability of a \(G\)-structure on a manifold. For a Riemannian manifold the structure function is the Riemann tensor. In this work, we compute structure functions for the odd analogue of the metric on supermanifolds and for several related structures. Structure functions take values in Spencer cohomology groups, which we describe by means of the representation theory of Lie algebras and Lie superalgebras”.
Reviewer: R.Schmid (Atlanta)


53C10 \(G\)-structures
53B20 Local Riemannian geometry
58A50 Supermanifolds and graded manifolds
Full Text: DOI


[1] Alekseevskii, D., Lychagin, V., and Vinogradov, A.:Main Ideas and Methods of Differential Geometry, Current Problems in Mathematics vol. 28, VINITI, Moscow, 1988 (Russian). English trans. by Springer in Soviet Math., Encyclop. series.
[2] Fuks, D. B.:Cohomology of Infinite-Dimensional Lie Algebras, Consultants Bureau, New York, London, 1986. · Zbl 0667.17005
[3] Gelfand, S. I. and Manin, U. I.:Methods in Homological Algebra, vol. 1, Introduction to the Theory of Cohomology and Derived Categories, Nauka, Moscow, 1988 (Russian).
[4] Goncharov, A.: Infinitesimal structures related to Hermitian symmetric spaces,Funct. Anal. Appl. 15 (1981), 221-223. · Zbl 0499.53032
[5] Goncharov, A.: Generalized conformai structures on manifolds,Selecta Math. Soviet 6 (1987), 307-340. · Zbl 0632.53038
[6] Guillemin, V.: The integrability problem for G-structuresTrans. Amer. Math. Soc. 116 (1964), 544-560. · Zbl 0178.55702
[7] Kac, V.: Classification of simple Z-graded Lie superalgebras and simple Jordan superalgebras,Comm. Algebra 13 (1977), 1375-1400. · Zbl 0367.17007
[8] Kobayashi, S.:Transformation Groups in Differential Geometry, Springer-Verlag, Berlin, New York, 1972. · Zbl 0246.53031
[9] Kostant, B.: Lie algebra cohomology and the generalized Borel-Weil theorem,Ann. of Math. 74 (1961), 329-387. · Zbl 0134.03501
[10] Leites, D.: New Lie superalgebras and mechanics,Soviet Math. Dokl. 18(5) (1977), 1277-1280. · Zbl 0403.17002
[11] Leites, D.: Introduction to supermanifold theory,Russian Math. Surveys 33 (1980), 1-55; an expanded version:Supermanifold Theory, Karelia Branch of the USSR Acad. of Sci., Petrozavodsk, 1983 (Russian). · Zbl 0462.58002
[12] Leites, D. (ed.):Seminar on Supermanifolds, Reports of Dept. of Math, of Stockholm Univ. 1-34 (1986-1989).
[13] Leites, D.: Selected problems of supermanifold theory,Duke Math. J. 54 (1987), 649-656. · Zbl 0646.58012
[14] Leites, D. and Poletaeva, E.: Analogues of the Riemannian structure for classical superspaces In A. I. Kostrikinet al. (eds),Proc. Internat. Conf. Algebra, Novosibirsk, 1989, Contemporary Mathematics, 131 (1992), Part I, 603-612. · Zbl 0795.53047
[15] Leites, D., Poletaeva, E., and Serganova, V.: Einstein equations on manifolds and supermanifolds,Classical Quantum Gravity (to appear). · Zbl 1009.35085
[16] Leites, D., Poletaeva, E., and Serganova, V.: Supergravities and contact type structures on supermanifolds,Classical Quantum Gravity (to appear). · Zbl 0847.58008
[17] Leites, D., Serganova, V., and Vinel, G.: Classical superspaces and related structures, in C. Bartocci, U. Bruzzo, and R. Cianci (eds),Differential Geometry Methods in Theoretical Physics, Proc., Rapallo, Italy, 1990. Lecture Notes in Phys. 375, Springer-Verlag, Berlin, Heidelberg, New York, 1991, pp. 286-297. · Zbl 0752.53016
[18] Poletaeva, E.: Penrose tensors on supergrassmannians,Math. Scand. 1993 (to appear). · Zbl 0791.53035
[19] Shmid, W.: Die Randwerte holomorpher Functionen auf hermitesch symmetrischen R?umen,Invent. Math. 9 (1969), 61-80. · Zbl 0219.32013
[20] Serganova, V.: Classification of real simple Lie superalgebras and symmetric superspaces,Funct. Anal. Appl. 17 (1983), 200-207. · Zbl 0545.17001
[21] Sternberg, S.:Lectures on Differential Geometry, 2nd edn, Chelsea Pub. Co., New York, 1983. · Zbl 0518.53001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.