Bismut, Jean-Michel; Zhang, Weiping Real embeddings and eta invariants. (English) Zbl 0795.57010 Math. Ann. 295, No. 4, 661-684 (1993). Let \(i:Y \to X\) be an embedding of real compact odd dimensional manifolds. The purpose of this paper is to establish a formula mod\((\mathbb{Z})\) expressing the difference of certain eta invariants over \(X\) as the sum of an eta invariant over \(Y\) and of integrals over \(X\) and \(Y\) of Chern-Simons currents. Reviewer: J.-M.Bismut, W.Zhang (Paris) Cited in 4 ReviewsCited in 13 Documents MSC: 57R20 Characteristic classes and numbers in differential topology 58J20 Index theory and related fixed-point theorems on manifolds 57R40 Embeddings in differential topology Keywords:characteristic classes and numbers; index theory and fixed point theory; embedding of real compact odd dimensional manifolds; eta invariants; Chern-Simons currents PDF BibTeX XML Cite \textit{J.-M. Bismut} and \textit{W. Zhang}, Math. Ann. 295, No. 4, 661--684 (1993; Zbl 0795.57010) Full Text: DOI EuDML OpenURL References: [1] [ABoP] Atiyah, M.F., Bott, R., Patodi, V.K.: On the heat equation and the Index Theorem. Invent. Math.19, 279-330 (1973) · Zbl 0257.58008 [2] [AH] Atiyah, M.F., Hirzebruch, F.: Riemann-Roch theorem for differential manifolds. Bull. Am. Math. Soc.65, 276-281 (1959) · Zbl 0142.40901 [3] [APS] Atiyah, M.F., Patodi, V.K., Singer, I.M.: Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc.77, 43-69 (1975) · Zbl 0297.58008 [4] [B1] Bismut, J.M.: Superconnection currents and complex immersions. Invent. Math. 59-113 (1990) · Zbl 0696.58006 [5] [B2] Bismut, J.M.: Eta invariants and complex immersions. Bull. Soc. Math. France118, 211-227 (1990) · Zbl 0721.58057 [6] [B3] Bismut, J.M.: Koszul complexes, harmonic oscillators and the Todd class. J.A.M.S.3, 159-256 (1990) · Zbl 0702.58071 [7] [BC] Bismut, J.M., Cheeger, J.: ?-invariants and their adiabatic limits. J.A.M.S.2, 33-70 (1989) · Zbl 0671.58037 [8] [BF] Bismut, J.-M., Freed, D.S.: The analysis of elliptic families II. Dirac operators, eta invariants and the holonomy theorem. Comm. Math. Phys.107, 103-163 (1986) · Zbl 0657.58038 [9] [BGS] Bismut, J.M., Gillet, H., Soul?, C.: Bott-Chern currents and complex immersions. Duke Math. J.60, 255-284 (1990) · Zbl 0697.58005 [10] [BL] Bismut, J.M., Lebeau, G.: Complex immersions and Quillen metrics. Publ. Math. Inst. Hautes Etud. Sci.91, 1-298 (1991) · Zbl 0784.32010 [11] [Ge] Getzler, E.: A short proof of the Atiyah-Singer Index Theorem. Topology25, 111-117 (1986) · Zbl 0607.58040 [12] [GS] Gillet, H., Soul?, C.: Analytic torsion and the arithmetic Todd genus. Topology30, 21-54 (1991) · Zbl 0787.14005 [13] [Q] Quillen, D.: Superconnections and the Chern character. Topology24, 89-95 (1985) · Zbl 0569.58030 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.