×

Multiplicity of 2-nodal solutions of the Yamabe equation. (English) Zbl 07959975

Summary: Given a closed Riemannian manifold \((M,g)\), we use the gradient flow method and Sign-Changing Critical Point Theory to prove multiplicity results for \(2\)-nodal solutions of a subcritical non-linear equation on \((M,g)\), see (1.1) below. If \((N,h)\) is a closed Riemannian manifold of constant positive scalar curvature our result gives multiplicity results for the Yamabe-type equation on the Riemannian product \((M\times N, g + \varepsilon h)\), for \(\varepsilon > 0\) small.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
58J05 Elliptic equations on manifolds, general theory

References:

[1] B. Ammann, M. Dahl and E. Humbert, Smooth Yamabe invariant and surgery, J. Differential Geometry 94 (2013), 1-58. · Zbl 1269.53037
[2] B. Ammann and E. Humbert, The second Yamabe invariant, J. Funct. Anal. 235 (2006), 377-412. · Zbl 1142.53026
[3] B. Asari, Riemannian \(L^p\) center of mass: existence, eniqueness, and convexity, Proceedings of the American Mathematical Society, vol. 139, no. 2, February 2011, pp. 655-673. · Zbl 1220.53040
[4] T. Aubin, Equations differentielles non-lineaires et probleme de Yamabe concernant la courbure scalaire, J. Math. Pures Appl. 55 (1976), 269-296. · Zbl 0336.53033
[5] T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer, and 2-nodal solutions of a semiclassical nonlinear Schodinger equation, Math. Ann. 338 (2005), 147-187.
[6] V. Benci, C. Bonanno and M. Micheletti, On a multiplicity of solutions of a nonlinear elliptic problem on a Riemannian manifolds, J. Funct. Anal. 252 (2007), no. 1, 147-185.
[7] R. Bettiol and P. Piccione, Multiplicity of solutions to the Yamabe problem on collapsing Riemannian submersions, Pacific J. Math. 266 (2013), 1-21. · Zbl 1287.53030
[8] A. Castro, J. Cossio and J.M. Neuberger, A sign-changing solution for a superliner Dirichlet problem, Rocky Mountain J. Math. 27 (2005), no. 4, 1041-1053. · Zbl 0907.35050
[9] K.-C. Chang, Methods in Nonlinear Analysis, Springer, 2005. · Zbl 1081.47001
[10] K.-C. Chang, Infinite Dimensional Morse Theory and Multiple Solution Problems, Birkhauser, Basel, 1993. · Zbl 0779.58005
[11] M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents, Calc. Var. Partial Differ. Equ. 48 (2013), 611-623. · Zbl 1280.35047
[12] M. Clapp and J.C. Fernandez, Multiplicity of nodal solution to the Yamabe problem, Calc. Var. Partial Differ. Equ. 56 (2017), paper no.] 145, 611-623. · Zbl 1379.35131
[13] M. Clapp and M. Micheletti, Asymptotic profile of 2-nodal solutions to a semilinear elliptic problem on a Riemannian manifold, Adv. Differential Equations 19 (2014), no. 3/4, 225-244, DOI: 10.57262/ade/1391109085. · Zbl 1296.58010
[14] M. Clapp and M. Micheletti, Multiplicity and asymptotic profile of 2-nodal solutions to a semilinear elliptic problem on a Riemannian manifold (2013), arXiv: 1301.0143.
[15] E.N. Dancer, A.M. Micheletti and A. Pistoia, Multipeak solutions for some singularly perturbed nonlinear elliptic problems on Riemannian manifolds, Manuscripta Math. 128 (2009), 163-193. · Zbl 1159.58012
[16] L.L. de Lima, P. Piccione and M. Zedda, On bifurcation of solutions of the Yamabe problem in product manifolds, Ann. Inst. H. Poincare C Non Lineaire Anal. 29 (2012), 261-277. · Zbl 1239.58005
[17] S. Deng, Z. Khemiri and F. Mahmoudi, On spike solutions for a singularly perturbed problem in a compact Riemannian manifold, Commun. Pure Appl. Anal. (2018), no. 5, 2063-2084. · Zbl 1398.35021
[18] Y. Ding, On a conformally invariant elliptic equation on \(\mathbb R^n\), Comm. Math. Phys. 107 (1986), no. 2, 331-335. · Zbl 0608.35017
[19] J.C. Fernandez and J. Petean, Low energy nodal solutions to the Yamabe equation, arXiv: 1807.06114.
[20] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb R^n\), Adv. Math. Suppl. Stud. A (1981), 369-402. · Zbl 0469.35052
[21] K. Grove and H. Karcher, How to conjugate \(C^1\)-close group actions, Math. Z. 132 (1973), 11-20. · Zbl 0245.57016
[22] E. Hebey, NonLinear Analysis on Manifolds: Sobolov Spaces and inequalities, Courant Lecture Notes in Mathematics, vol. 5, New York University, Courant Institute of Mathematics Sciences, New York; American Mathematical Society, Province, Rhode Island, 1999.
[23] G. Henry and F. Madani, Equivariant second Yamabe constant, J. Geom. Anal. 28 (2018), 3747-3774, DOI: 10.1007/s12220-017-9978-x. · Zbl 1407.53035
[24] G. Henry and J. Petean, Isoparametric hypersurfaces and metrics of constant scalar curvature, Asian J. Math. 18 (2014), 53-68. · Zbl 1292.53041
[25] N. Hirano, Multiple existence of solutions for a nonlinear elliptic problem on a Riemannian manifold, Nonlinear Anal. 70 (2009), 671-692. · Zbl 1157.58006
[26] H. Karcher, Riemannian center of mass and mollifier smoothing, Comm. Pure Applied Math. 30 (1977), 509-541 · Zbl 0354.57005
[27] M.K. Kwong, Uniqueness of positive solutions of \(\Delta u − u + u^p = 0\) in \(\mathbb R^n\), Arch. Rational. Mech. Anal. 105 (1989), 243-266. · Zbl 0676.35032
[28] J.M. Lee, Riemannanian Manifolds An Introduction to the Curvature, vol. 176, Springer GTM, 1997. · Zbl 0905.53001
[29] J.M. Lee and T.H. Parker, The Yamabe problem, Bull. Amer. Math. Soc. (N.S.) 17 (1987), no. 1, 37-91. · Zbl 0633.53062
[30] A.M. Micheletti and A. Pistoia, The role of the scalar curvature in a nonlinear elliptic problem on Riemannian manifolds, Calc. Var. 34 (2009), 233-265. · Zbl 1161.58310
[31] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geom. 6 (1971), 247-258. · Zbl 0236.53042
[32] J. Petean, Multiplicity results for the Yamabe equation by Lusternik-Schnirelamm theory, J. Funct. Anal. 276 (2019), 1788-1805. · Zbl 1409.58013
[33] B. Premoselli andJ. Vetois, Sign-changing blow-up for the Yamabe equation at the lowest energy level, Adv. Math. 410 (2022), Part B, DOI: 10.1016/j.aim.2022.108769. · Zbl 1507.35049
[34] C. Rey and J.M. Ruiz, Multipeak solutions for the Yamabe equation, arXiv: 1807.08385.
[35] F. Robert and J. Vetois, Sign-changing blow-up for scalar curvature type equations, Comm. Partial Differential Equations 38 (2013), 1437-1465. · Zbl 1277.58010
[36] M. Schechter and W. Zou, Critical Point Theory and its applications, Springer-Verlag, 2006. · Zbl 1125.58004
[37] R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geometry 20 (1984), 479-495. · Zbl 0576.53028
[38] R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, Lecture Notes in Math., vol. 1365, Springer-Verlag, Berlin, 1989, pp. 120-154. · Zbl 0702.49038
[39] N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), no. 3, 265-274. · Zbl 0159.23801
[40] J. Wei and M. Winter, Mathematics Aspects of Pattern Formations in Biological System, vol. 189, AMS, Springer-Verlag, 2014. · Zbl 1295.92013
[41] T. Weth, Energy bounds for entire nodal solutions of autonomus superlinear equations, Calc. Var. Partial Differential Equations 27 (2006), no. 4, 421-437. · Zbl 1151.35365
[42] H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21-37. · Zbl 0096.37201
[43] Z. Zhang, Variational, Topological and Partial Order Methods with Their Applications, Developments in Matematics, vol. 29, Springer-Verlag, 2013. · Zbl 1258.47003
[44] W. Zou, Sign-Changing Critical Point Theory, Springer-Verlag, 2008. · Zbl 1159.49010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.