×

zbMATH — the first resource for mathematics

An almost strongly minimal non-Desarguesian projective plane. (English) Zbl 0796.03041
Summary: Zil’ber conjectured that every strongly minimal set is ‘trivial’, ‘field- like’, or ‘module-like’. This conjecture was refuted by E. Hrushovski [Ann. Pure Appl. Logic 62, 147-167 (1993)]. Varying his construction, we refute here two more precise versions of the conjecture.

MSC:
03C60 Model-theoretic algebra
03C35 Categoricity and completeness of theories
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] J. T. Baldwin, New families of stable structures, Technical Report: Notes on Hrushovski’s Construction, intended for lectures in Beijing.
[2] J. T. Baldwin and S. Shelah, The primal framework. I, Ann. Pure Appl. Logic 46 (1990), no. 3, 235 – 264. · Zbl 0752.03014 · doi:10.1016/0168-0072(90)90005-M · doi.org
[3] C. R. J. Clapham, A. Flockhart, and J. Sheehan, Graphs without four-cycles, J. Graph Theory 13 (1989), no. 1, 29 – 47. · Zbl 0679.05043 · doi:10.1002/jgt.3190130107 · doi.org
[4] Ehud Hrushovski, A new strongly minimal set, Ann. Pure Appl. Logic 62 (1993), no. 2, 147 – 166. Stability in model theory, III (Trento, 1991). · Zbl 0804.03020 · doi:10.1016/0168-0072(93)90171-9 · doi.org
[5] -, A stable \( {\aleph _0}\)-categorical pseudoplane, preprint, 1988.
[6] Anand Pillay, Model theory, stability theory & stable groups, The model theory of groups (Notre Dame, IN, 1985 – 1987) Notre Dame Math. Lectures, vol. 11, Univ. Notre Dame Press, Notre Dame, IN, 1989, pp. 1 – 40. · Zbl 0792.03019
[7] Saharon Shelah, Universal classes, Classification theory (Chicago, IL, 1985) Lecture Notes in Math., vol. 1292, Springer, Berlin, 1987, pp. 264 – 418. · Zbl 0578.03016 · doi:10.1007/BFb0082242 · doi.org
[8] B. I. Zil’ber, Totally categorical structures and combinatorial geometries, Soviet Math. Dokl. 24 (1981), 149-151. · Zbl 0485.51004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.