Heinig, H. P.; Stepanov, V. D. Weighted Hardy inequalities for increasing functions. (English) Zbl 0796.26008 Can. J. Math. 45, No. 1, 104-116 (1993). Complete results are known for the two weight inequality for the Hardy operator \[ Pf(x) = {1\over x} \int_ 0^ x f(t) dt, \]\[ \left( \int_ 0^ \infty \bigl | Pf(x) \bigr |^ q w(x) dx \right)^{1/q} \leq C \left( \int_ 0^ \infty \bigl | f(x) \bigr |^ p v(x) dx \right)^{1/p}, \] where \(f\) is restricted to the class of nonincreasing nonnegative functions.By a proof similar to one used by the second author [Trans. Am. Math. Soc. 338, No. 1, 173-186 (1993; Zbl 0786.26015)] to prove results for the Hardy operator for nonincreasing functions, the authors show that the Hardy inequality holds for \(1 < p \leq q < \infty\) for nonnegative increasing functions iff \(B < \infty\), where \[ B_ 0(t)=\left[ \int_ t^ \infty (x-t)^ q x^{-q}w(x) dx \right]^{1/q} V(t)^{-1/p}, \]\[ B_ 1(t) = \left[ \int_ t^ \infty x^{-q} w(x) dx \right]^{1/q} \left[ \int_ 0^ t (t-x)^{p'} V(x)^{ - p'} v(x) dx \right]^{1/p'}, \] where \(V(x) = \int_ 0^ x v(t) dt\), \(B_ i = \sup_{t>0} B_ i(t)\), and \(B = \max (B_ 0,B_ 1)\).The authors also give a more complicated necessary and sufficient condition for the case \(1 < q < p < \infty\) and a necessary condition in the case \(0 < q < 1 < p < \infty\). Reviewer: R.Johnson (College Park) Cited in 18 Documents MSC: 26D15 Inequalities for sums, series and integrals 42B25 Maximal functions, Littlewood-Paley theory Keywords:two weight inequality; Hardy operator; Hardy inequality; nonnegative increasing functions Citations:Zbl 0786.26015 PDF BibTeX XML Cite \textit{H. P. Heinig} and \textit{V. D. Stepanov}, Can. J. Math. 45, No. 1, 104--116 (1993; Zbl 0796.26008) Full Text: DOI OpenURL