×

zbMATH — the first resource for mathematics

An invariant of conjugacy for certain one-parameter families of vector fields or diffeomorphisms. (Un invariant de conjugaison pour certaines familles à un paramètre de champs de vecteurs ou de difféomorphismes.) (French) Zbl 0797.58059
The author studies the \((C^ 0,C^ 0)\)-conjugacy between two generic local one-parameter families of real vector fields in the neighborhood of a singularity of saddle-knot type. A new rigidity phenomenon is found. This rigidity leads to a topological conjugation invariant.
Reviewer: V.Oproiu (Iaşi)
MSC:
37G99 Local and nonlocal bifurcation theory for dynamical systems
PDF BibTeX XML Cite
Full Text: DOI Numdam EuDML
References:
[1] Annabi ( H. ). - Ridigité et invariant pour la (C0, C0)-conjugaison , Thèse, Faculté des Sciences de Tunis (à paraître).
[2] Kostov ( V.P. ) .- Versal deformation of differential forms of real degree on the real line , Math. U.S.S.R., Izvestiya 37 , n^\circ 5 ( 1991 ), pp. 525 - 537 . MR 1098622 | Zbl 0738.58001 · Zbl 0738.58001 · doi:10.1070/IM1991v037n03ABEH002157
[3] Newhouse ( S. ), Palis ( N. ) et Takens ( F. ) .- Bifurcations and stability of families of diffeomorphisms , Publ. Math. I.H.E.S. 57 , pp. 5 - 72 . Numdam | Zbl 0518.58031 · Zbl 0518.58031 · doi:10.1007/BF02698773 · numdam:PMIHES_1983__57__5_0 · eudml:103989
[4] Roussarie ( R. ) .- Weak and continuous equivalences for families on line diffeomorphisms , In M. I. Camacho, M. J. Pacifico & F. Takens, Dynamical systems and bifurcation theory , Pitman Research Notes in Mathematics Series 160 ( 1987 ), pp. 377 - 385 . Zbl 0641.58037 · Zbl 0641.58037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.