zbMATH — the first resource for mathematics

The dual least action problem for an ideal, incompressible fluid. (English) Zbl 0797.76006
It is shown that the weak least action problem describing the motion of an ideal incompressible fluid has a unique dual solution. Physically speaking, the dual solution is the pressure field governing the motion of the ideal incompressible fluid. The existence and uniqueness results suggest that the pressure field is a relevant unknown in the least action problem, rather than the flow field. The proof is based on the concept of ‘slightly compressible’ generalized flow and uses some results on the measure-preserving diffeomorphisms.

76B99 Incompressible inviscid fluids
76M30 Variational methods applied to problems in fluid mechanics
58D30 Applications of manifolds of mappings to the sciences
Full Text: DOI
[1] V. I. Arnold & B. Khesin, Topological methods in hydrodynamics, Ann. Rev. Fluid Mech. 24 (1992) 145-166. · Zbl 0743.76019 · doi:10.1146/annurev.fl.24.010192.001045
[2] V. I. Arnold, Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique, Ann. Inst. Fourier 16 (1966) 319-361.
[3] J.-P. Bourguignon & H. Brezis, Remarks on the Euler equations, J. Funct. Anal. 15 (1974) 341-363. · Zbl 0279.58005 · doi:10.1016/0022-1236(74)90027-5
[4] Y. Brenier, The least action principle and the related concept of generalized flows for incompressible inviscid fluids, J. Amer. Math. Soc. 2 (1990) 225-255. · Zbl 0697.76030 · doi:10.1090/S0894-0347-1989-0969419-8
[5] Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 64 (1991) 375-417. · Zbl 0738.46011 · doi:10.1002/cpa.3160440402
[6] Y. Brenier, Le problème du plus court chemin en hydrodynamique incompressible, Journées Equations aux dérivées partielles, Saint-Jean de Monts, Juin 1992, Société mathématique de France.
[7] H. Brezis, Analyse fonctionnelle, Masson, 1983, Paris.
[8] B. Dacorogna & J. Moser, On a PDE involving the jacobian determinant, Ann. Inst. Henri Poincaré Analyse non-linéaire 7 (1990) 1-26.
[9] R. DiPerna & A. Majda, Oscillations and concentrations in weak solutions of the incompressible fluid equations, Comm. Math. Phys. 108 (1987) 667-689. · Zbl 0626.35059 · doi:10.1007/BF01214424
[10] D. Ebin & J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid, Ann. Math. 92 (1970) 102-163. · Zbl 0211.57401 · doi:10.2307/1970699
[11] I. Ekeland, The Hopf-Rinow theorem in infinite dimension, J. Diff. Geom. 13 (1978) 287-301. · Zbl 0393.58004
[12] A. Majda, The interaction of nonlinear analysis and modern applied mathematics, Proceedings of the International Congress of Mathematicians, Kyoto 1990, Springer, 1991.
[13] C.Marchioro & M. Pulvirenti, Lecture notes on the Euler equations, to appear.
[14] J.-J. Moreau, Une méthode de cinématique fonctionnelle en hydrodynamique, C.R. Acad. Sci. Paris 249 (1959) 2156-2158. · Zbl 0117.19601
[15] S. T. Rachev, The Monge-Kantorovich mass transference problem, Th. Prob. Appl. 49 (1985) 647-676. · Zbl 0581.60010 · doi:10.1137/1129093
[16] M. Roesch, manuscript, 1992.
[17] P. Rouchon, Jacobi equations, Riemannian curvature and the hydrodynamics of a perfect incompressible fluid, preprint. · Zbl 0755.76026
[18] A. I. Shnirelman, On the geometry of the group of diffeomorphisms and the dynamics of an ideal incompressible fluid, Math. Sbornik USSR 56 (1987) 79-105. · Zbl 0725.58005 · doi:10.1070/SM1987v056n01ABEH003025
[19] L. Tartar, The compensated compactness method applied to systems of conservation laws, Systems of nonlinear Partial Differential Equations, ed. J. M. Ball, Reidel, 1983, Dordrecht. · Zbl 0536.35003
[20] L. C. Young, Lectures on the calculus of variations and optimal control theory, Chelsea, 1980, New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.