×

zbMATH — the first resource for mathematics

The Grothendieck theory of dessins d’enfants. (English) Zbl 0798.00001
London Mathematical Society Lecture Note Series. 200. Cambridge: Cambridge University Press. 368 p. (1994).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Birch, Bryan, Noncongruence subgroups, covers and drawings, 25-46 [Zbl 0930.11024]
Schneps, Leila, Dessins d’enfants on the Riemann sphere, 47-77 [Zbl 0823.14017]
Couveignes, Jean-Marc; Granboulan, Louis, Dessins from a geometric point of view, 79-113 [Zbl 0835.14010]
Jones, Gareth; Singerman, David, Maps, hypermaps and triangle groups, 115-145 [Zbl 0833.20045]
Malle, Gunter, Fields of definition of some three point ramified field extensions, 147-168 [Zbl 0871.14021]
Shabat, George B., On the classification of plane trees by their Galois orbits, 169-177 [Zbl 0813.05073]
Bauer, Michel; Itzykson, Claude, Triangulations, 179-236 [Zbl 0848.14013]
Cohen, Paula Beazley, Dessins d’enfants and Shimura varieties, 237-243 [Zbl 0835.14011]
Ihara, Yasutaka, Horizontal divisors on arithmetic surfaces associated with Belyi uniformizations, 245-254 [Zbl 0854.14004]
Saito, Kyoji, Algebraic representation of the Teichmüller spaces, 255-288 [Zbl 0843.14011]
Ihara, Yasutaka, On the embedding of \(\text{Gal}(\overline\mathbb{Q}/\mathbb{Q})\) into \(\widehat{GT}\). (Appendix by Michel Emsalem and Pierre Lochak: The action of the absolute Galois group on the moduli space of spheres with four marked points), 289-321, Appendix 307-321 [Zbl 0849.12005]
Lochak, Pierre; Schneps, Leila, The Grothendieck-Teichmüller group and automorphisms of braid groups, 323-358 [Zbl 0827.20050]
Degiovanni, Pascal, Moore and Seiberg equations, topological field theories and Galois theory, 359-368 [Zbl 0822.57024]

MSC:
00B15 Collections of articles of miscellaneous specific interest
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
PDF BibTeX XML Cite