×

Generic behaviour of one-dimensional blow up patterns. (English) Zbl 0798.35081

This paper concerns the Cauchy problem \[ u_ t- u_{xx}= u^ p,\;x\in \mathbb{R},\;t>0,\quad u(x,0)= u_ 0(x),\;x\in \mathbb{R}, \] where \(p>0\) and \(u_ 0\) is continuous, nonnegative and compactly supported. The author shows that blow up consists generically in a single point \(\bar x\), and he gives an asymptotic expansion for \(\tau\to \infty\) of \(\Phi(y,\tau)\), where \[ \Phi(y,\tau):= (T- t)^{-(1/p-1)} u(x,t),\;y:= (x- \bar x)(T- t)^{-1/2},\;\tau:= -\log(T-t), \] and \(T\) is the blow up time.
Reviewer: L.Recke (Berlin)

MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35K15 Initial value problems for second-order parabolic equations

References:

[1] A. Bressan , On the asymptotic shape of blow up , Indiana Univ. Math. J. , 39 , 4 ( 1990 ), 947 - 960 . MR 1087180 | Zbl 0705.35014 · Zbl 0705.35014 · doi:10.1512/iumj.1990.39.39045
[2] A. Bressan , Stable blow up patterns , J. Differential Equations , 98 ( 1992 ), 57 - 75 . MR 1168971 | Zbl 0770.35010 · Zbl 0770.35010 · doi:10.1016/0022-0396(92)90104-U
[3] J. Bebernes - D. Eberly , Mathematical problems from combustion theory , Appl. Math. Sci. 83 , Springer ( 1989 ). MR 1012946 | Zbl 0692.35001 · Zbl 0692.35001
[4] X.Y. Chen - H. Matano , Convergence, asymptotic periodicity and finite point blow up in one-dimensional semilinear heat equations , J. Differential Equations , 78 ( 1989 ), 160 - 190 . MR 986159 | Zbl 0692.35013 · Zbl 0692.35013 · doi:10.1016/0022-0396(89)90081-8
[5] J.W. Dold , Analysis of the early stage of thermal runaway , Quart. J. Mech. Appl. Math. 38 ( 1985 ), 361 - 387 . Zbl 0569.76079 · Zbl 0569.76079 · doi:10.1093/qjmam/38.3.361
[6] A. Friedman , Partial Differential Equations of parabolic type , Robert E. Krieger Co ( 1983 ).
[7] S. Filippas - R.V. Kohn , Refined asymptotics for the blow up of u t - \Delta u = up , Comm. Pure. Appl. Math. , XLV ( 1992 ), 821 - 869 . Zbl 0784.35010 · Zbl 0784.35010 · doi:10.1002/cpa.3160450703
[8] A. Friedman - J.B. Mcleod , Blow up of positive solutions of semilinear heat equations , Indiana Univ. Math. J. , 34 ( 1985 ), 425 - 447 . MR 783924 | Zbl 0576.35068 · Zbl 0576.35068 · doi:10.1512/iumj.1985.34.34025
[9] H. Fujita , On the blowing up of solutions of the Cauchy problem for ut = \Delta u+u1+\alpha , J. Fac. Sci. Univ. Tokyo Sect. I , 13 ( 1966 ), 109 - 124 . Zbl 0163.34002 · Zbl 0163.34002
[10] V.A. Galaktionov - M.A. Herrero - J.J.L. Velázquez , The space structure near a blow up point for semilinear heat equations , Soviet J. Comput. Math. and Math. Physics , 31 ( 1991 ), 399 - 411 . MR 1107061 | Zbl 0747.35014 · Zbl 0747.35014
[11] Y. Giga - R.V. Kohn , Asymptotically self-similar blow up of semilinear heat equations , Comm. Pure Appl. Math. , 38 ( 1985 ), 297 - 319 . MR 784476 | Zbl 0585.35051 · Zbl 0585.35051 · doi:10.1002/cpa.3160380304
[12] Y. Giga - R.V. Kohn , Characterizing blow up using similarity variables , Indiana Univ. Math. J. , 36 ( 1987 ), 1 - 40 . MR 876989 | Zbl 0601.35052 · Zbl 0601.35052 · doi:10.1512/iumj.1987.36.36001
[13] Y. Giga - R.V. Kohn , Nondegeneracy of blow up for semilinear heat equations , Comm. Pure Appl. Math. , 42 ( 1989 ), 845 - 884 . MR 1003437 | Zbl 0703.35020 · Zbl 0703.35020 · doi:10.1002/cpa.3160420607
[14] V.A. Galaktionov - S.A. Posashkov , Application of new comparison theorems in the investigation of unbounded solutions of nonlinear parabolic equations , Differential Equations , 22 , 7 ( 1986 ), 116 - 1183 . MR 853803 | Zbl 0632.35028 · Zbl 0632.35028
[15] M.A. Herrero - J.J.L. Velázquez , Blow up behaviour of one-dimensional semilinear parabolic equations , Ann. Inst. H. Poincaré , to appear. Numdam | MR 1220032 | Zbl 0813.35007 · Zbl 0813.35007
[16] M.A. Herrero - J.J.L. Velázquez , Flat blow up in one-dimensional semilinear heat equations , Differential Integral Equations , Vol. 5 , n^\circ 5 ( 1992 ), 973 - 997 . MR 1171974 | Zbl 0767.35036 · Zbl 0767.35036
[17] M.A. Herrero - J.J.L. Velázquez , Blow up profiles in one-dimensional, semilinear parabolic problems , Comm. Partial Differential Equations , 17 , 182 , ( 1992 ), 205 - 219 . MR 1151261 | Zbl 0772.35027 · Zbl 0772.35027 · doi:10.1080/03605309208820839
[18] M.A. Herrero - J.J.L. Velázquez , Plane structures in thermal runaway , Israel J. Math. , to appear. MR 1231197 | Zbl 0813.35035 · Zbl 0813.35035 · doi:10.1007/BF02764836
[19] L.M. Hocking - K. Stewartson - J.T. Stuart , A nonlinear instability burst in plane parallel flow , J. Fluid Mech. J 1 ( 1972 ), 705 - 735 . Zbl 0232.76053 · Zbl 0232.76053 · doi:10.1017/S0022112072001326
[20] J.L. Lions - B. Malgrange , Sur l’unicité retrograde , Math. Scand. 8 ( 1960 ), 277 - 286 . MR 140855 | Zbl 0126.12202 · Zbl 0126.12202
[21] F. Merle , Solution of a nonlinear heat equation with arbitrarily given blow up points , Comm. Pure. Appl. Math. , to appear. MR 1151268 | Zbl 0785.35012 · Zbl 0785.35012 · doi:10.1002/cpa.3160450303
[22] C.E. Müller - F.B. Weissler , Single point blow up for a general semilinear heat equation , Indiana Univ. Math. J. , 34 ( 1983 ), 881 - 913 . MR 808833 | Zbl 0597.35057 · Zbl 0597.35057 · doi:10.1512/iumj.1985.34.34049
[23] J.J.L. Velázquez , Local behaviour near blow up points for semilinear parabolic equations , J. Differential Equations , to appear. MR 1251859 | Zbl 0798.35023 · Zbl 0798.35023 · doi:10.1006/jdeq.1993.1113
[24] F.B. Weissler , Single point blow up of semilinear initial value problems , J. Differential Equations , 55 ( 1984 ), 204 - 224 . MR 764124 | Zbl 0555.35061 · Zbl 0555.35061 · doi:10.1016/0022-0396(84)90081-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.