Bony, Jean-Michel; Chemin, Jean-Yves Functional spaces associated with the Weyl-Hörmander calculus. (Espaces fonctionnels associés au calcul de Weyl-Hörmander.) (French) Zbl 0798.35172 Bull. Soc. Math. Fr. 122, No. 1, 77-118 (1994). Following an idea of R. Beals [Duke Math. J. 42, 1-42 (1975; Zbl 0343.35078)], the authors consider Sobolev spaces associated to general classes of pseudo-differential operators. Precisely, if \(g\) is a metric of Hörmander and \(M\) a related weight function, \(H(M,g)\) is defined as the space of all \(u\in {\mathcal S}'(\mathbb{R}^ n)\) such that \(a^ W(x,D)u\in L^ 2(\mathbb{R}^ n)\) for all Weyl pseudo-differential operators with symbol \(a(x,\eta)\in S(M,g)\). An equivalent definition of \(H(M,g)\) is given by the authors in terms of decompositions of Littlewood-Paley type. Such decompositions allow in turn an abstract characterization of the class of the operators with symbol \(a(x,\eta)\) in \(S(M,g)\) and applications to the so-called problem of the spectral invariance. Similar results for the classes \(S^ m_{\rho,\delta}\) were obtained by J. Ueberberg [Manuscr. Math. 61, No. 4, 459-375 (1988; Zbl 0674.47033)]. Reviewer: L.Rodino (Torino) Cited in 1 ReviewCited in 74 Documents MSC: 35S05 Pseudodifferential operators as generalizations of partial differential operators 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems 47G30 Pseudodifferential operators Keywords:Weyl pseudo-differential operators; decompositions of Littlewood-Paley type; spectral invariance Citations:Zbl 0343.35078; Zbl 0674.47033 PDFBibTeX XMLCite \textit{J.-M. Bony} and \textit{J.-Y. Chemin}, Bull. Soc. Math. Fr. 122, No. 1, 77--118 (1994; Zbl 0798.35172) Full Text: DOI Numdam EuDML References: [1] BEALS (R.) . - Weighted distribution spaces and pseudodifferential operators , J. An. Math., t. 39, 1981 , p. 130-187. MR 83a:35105 | Zbl 0474.35089 · Zbl 0474.35089 · doi:10.1007/BF02803334 [2] BONY (J.-M.) et LERNER (N.) . - Quantification asymptotique et microlocalisations d’ordre supérieur I , Ann. Scient. Éc. Norm. Sup., 4e série, t. 22, 1989 , p. 377-433. Numdam | MR 90k:35276 | Zbl 0753.35005 · Zbl 0753.35005 [3] BRUYANT (F.) . - Estimations pour la composition d’un grand nombre d’opérateurs pseudo-différentiels et applications , Thèse Univ. Reims, 1979 . MR 80k:58093 · Zbl 0435.35086 [4] CANCELIER (C.) , CHEMIN (J.-Y.) et XU (C.-J.) . - Calcul de Weyl et opérateurs sous-elliptiques , Prépublication École Polytechnique, 1045, 1992 . MR 94g:35053 · Zbl 0797.35008 [5] COIFMAN (R.R.) et MEYER (Y.) . - Au delà des opérateurs pseudo-différentiels , Astérisque, Soc. Math. France, t. 57, 1978 . MR 81b:47061 | Zbl 0483.35082 · Zbl 0483.35082 [6] HELFFER (B.) . - Théorie spectrale pour des opérateurs globalement elliptiques , Astérisque, Soc. Math. France, t. 112, 1984 . MR 86d:35151 | Zbl 0541.35002 · Zbl 0541.35002 [7] HÖRMANDER (L.) . - The analysis of linear partial differential operators . - Springer-Verlag, 1985 . · Zbl 0601.35001 [8] LERNER (N.) . - Sur les espaces de Sobolev généraux associés aux classes récentes d’opérateurs pseudo-différentiels , C. R. Acad. Sc. Paris, Sér. A, t. 289, 1979 , p. 663-666. MR 80k:47055 | Zbl 0429.35078 · Zbl 0429.35078 [9] UEBERBERG (J.) . - Zur Spektralinvarianz von Algebren von Pseudo-differentialoperatoren in der Lp-Theorie , Manuscripta Mathematica, t. 61, 1988 , p. 459-475. Article | MR 89g:47070 | Zbl 0674.47033 · Zbl 0674.47033 · doi:10.1007/BF01258600 [10] UNTERBERGER (A.) . - Oscillateur harmonique et opérateurs pseudo-différentiels , Ann. Inst. Fourier, t. 29-3, 1979 , p. 201-221. Numdam | MR 81m:58077 | Zbl 0396.47027 · Zbl 0396.47027 · doi:10.5802/aif.758 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.