×

zbMATH — the first resource for mathematics

Global stability of families of vector fields. (English) Zbl 0798.58044
The authors consider one-parameter families of vector fields with simple recurrent set and provide a complete characterisation of the global stability of these families.

MSC:
37C75 Stability theory for smooth dynamical systems
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Douady, Étude Dynamique des Polynômes Complexes, Deuxième Partie · Zbl 0552.30018
[2] Douady, Étude Dynamique des Polynômes Complexes, Première Partie · Zbl 0552.30018
[3] Camacho, Société Mathématique de France 59?60 pp 83– (1978)
[4] DOI: 10.1090/S0273-0979-1984-15240-6 · Zbl 0558.58017 · doi:10.1090/S0273-0979-1984-15240-6
[5] DOI: 10.2307/1971308 · Zbl 0589.30022 · doi:10.2307/1971308
[6] Pommerenke, Complex Variables Th. and Appl. 5 pp 117– (1986) · Zbl 0581.30021 · doi:10.1080/17476938608814133
[7] Douady, Ann. Sci. École Norm. Sup. 18 pp 287– (1985)
[8] DOI: 10.1070/RM1986v041n04ABEH003376 · Zbl 0619.30033 · doi:10.1070/RM1986v041n04ABEH003376
[9] Levin, Coll. Mathematicum LXII pp 167– (1991)
[10] Lehto, Quasiconformal Mappings in the Plane (1973) · doi:10.1007/978-3-642-65513-5
[11] Goldberg, Ann. Sci. École Norm. Sup. 26 pp 51– (1993)
[12] Goluzin, Geomefric Theory of Functions of a Complex Variable. Vol. 26. Translations of Mathematical Monographs (1969) · Zbl 0183.07502
[13] DOI: 10.1007/BF01056491 · doi:10.1007/BF01056491
[14] Milnor, Preprint (1990)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.