×

zbMATH — the first resource for mathematics

Vanishing cycles of \(D\)-modules. (English) Zbl 0799.32031
Let \(X\) be a complex manifold and \(i:Y \to X\) the inclusion of a smooth hypersurface. If \({\mathcal M}\) is a \({\mathcal D}_ X\) or \({\mathcal E}_ X\)- module, let \(\widetilde \Phi ({\mathcal M}) = i^* (\widetilde {\mathcal D}^ 2 \otimes {\mathcal M})\), where \(\widetilde {\mathcal D}^ 2\) is a sheaf of 2-microdifferential operators and \(i^*\) is the extension to these operators of the inverse image of \({\mathcal D}\)-modules. \(\widetilde\Phi({\mathcal M})\) is a sheaf on the conormal bundle \(\pi:T_ Y^*X\to Y\) and has a \(\pi^{-1} {\mathcal D}_ Y\)-module structure. In fact if \({\mathcal M}\) is specializable (i.e., a \(b\)-function exists for \({\mathcal M})\), then \(\widetilde \Phi ({\mathcal M})\) is coherent as a \(\pi^{- 1} {\mathcal D}_ Y\)-module on \(T_ Y^* X-Y\) and hence locally constant over \(Y\). The equation of \(Y\) gives a nonvanishing section \(\sigma:Y \to T_ Y^* X\) and a coherent \({\mathcal D}_ Y\)-module \(\Phi ({\mathcal M}) = \sigma^{-1} \widetilde \Phi ({\mathcal M})\). This module is proved to be the same as the module of vanishing cycles defined by Kashiwara, Malgrange and Sabbah. This new definition allows one to calculate the characteristic cycle of \(\widetilde \Phi ({\mathcal M})\) from the microcharacteristic cycle of \({\mathcal M}\).
In the case when \({\mathcal M}\) is specializable, the author also proves that in the case of an irregular singularity the sheaf \(\widetilde \Phi ({\mathcal M})\) does not change if \(\widetilde {\mathcal D}^ 2\) is replaced by a sheaf \(\widetilde {\mathcal D}^ 2(r)\) of 2-microdifferential operators with specified growth. Then, a Cauchy theorem relates the solutions of the system \({\mathcal M}\) in the sheaf of microfunctions to the holomorphic solutions of \(\widetilde \Phi ({\mathcal M})\). Combining these allows the author to evaluate the growth of solutions of \({\mathcal M}\). The results are extended further to nonsmooth hypersurfaces \(Y\).
The proofs make extensive use of earlier results of the author on 2-microlocalization and results on \({\mathcal D}\)-modules and are hard to understand without these papers at hand.
Reviewer: J.S.Joel (Kelly)

MSC:
32S40 Monodromy; relations with differential equations and \(D\)-modules (complex-analytic aspects)
32C38 Sheaves of differential operators and their modules, \(D\)-modules
58J15 Relations of PDEs on manifolds with hyperfunctions
PDF BibTeX XML Cite
Full Text: DOI EuDML
References:
[1] Andronikof, E.: Microlocalisation temp?r?e des distributions et des fonctions holomorphes. Th?se ? l’Universit? Paris-Nord (1987) · Zbl 0633.32010
[2] Andronikof, E., Monteiro-Fernandes, T.: Th?or?me de comparaison pour les syst?mes rifuliecs In: D-modules and Microlocal Geometry, Wolter de Gruyter & Co. Berlin New York 1992
[3] Aoki, T.: Invertibility for microdifferential operators of infinite order. Publ. Res. Inst. Math. Sci. Kyoto18 1-29 (1982) · Zbl 0512.17005
[4] Bj?rk, J.E.: Rings of differential operators. Berlin Heidelberg New York: Springer 1979
[5] Boutet de Monvel, L., Kree, P.: Pseudodifferential operators and Gevrey classes, Ann. Inst. Fourier Grenoble17, 295-323 (1967)
[6] Boutet de Monvel, L.: Op?rateurs pseudo-diff?rentiels analytiques. S?minaire ? l’Universit? de Grenoble (1976)
[7] Brylinski, J.-L., Dubson, A., Kashiwara, M.: Formule de l’indice pour les modules holonomes et obstruction d’Euler locale, C.R. Acad. Sci., Paris SerI 293, 573-577 (1981). · Zbl 0492.58021
[8] Ginsburg, V.: Characteristic varieties and vanishing cycles, Invent. Math.84, 327-402 (1986) · Zbl 0598.32013
[9] Hartshorne, R.: Residues and duality. (Lect. Notes Math. vol. 20) Berlin Heidelberg New York: Springer 1966 · Zbl 0212.26101
[10] Iversen, B.: Cohomology of sheaves Berlin Heidelberg New York: Springer · Zbl 0559.55001
[11] Kashiwara, M.: On holonomic systems of differential equations II. Invent Math.49, 121-135 (1978) · Zbl 0401.32005
[12] Kashiwara, M.: Systems of microdifferential equations. (Prog. Math., vol. 34) Basel Boston Stuttgart: Birkh?user 1983 · Zbl 0521.58057
[13] Kashiwara, M.: Vanishing cycles and holonomic systems of differential equations In: Raynaud, M., Shioda, T. (eds.) Algebraic Geometry. (Lect. Notes Math.1016, pp. 134-142) Berlin Heidelberg New York: Springer 1983 · Zbl 0566.32022
[14] Kashiwara, M., Kawai, T.: On the holonomic systems of microdifferential equations III. Systems with regular singularities. Publ. Res. Inst. Math. Sci Kyoto17, 813-979 (1981) · Zbl 0505.58033
[15] Kashiwara, M., Kawai, T.: Second microlocalization and asymptotic expansions. In: Iagolnitzer, D. (ed.) Complex Analysis, microlocal calculus and relativistic quartum. (Lect. Notes Phys., vol.126, pp. 21-76) Berlin Heidelberg New York: Springer, 1980
[16] Laurent, Y.: Th?orie de la deuxi?me microlocalisation dans le domaine complexe. (Prog. Math. vol. 53) Basel Boston Stuttgart: Birkh?user 1985 · Zbl 0561.32013
[17] Laurent, Y.: Polygone de Newton et b-fonctions pour les modules microdiff?rentiels, Ann. Ec. Norm. Sup., IV. Ser20 391-441 (1987) · Zbl 0646.58021
[18] Laurent, Y.: Vanishing cycles and second microlocalization. In: Algebraic Analysis vol I, pp. 381-391. Boston: Academic Press 1989 · Zbl 0686.32008
[19] Laurent, Y.: Microlocal operators with plurisubharmonic growth. Compos. Math.86 23-67 (1993) · Zbl 0789.35191
[20] Laurent, Y., Schapira, P.: Image inverse des modules diff?rentiels, Compos. Math.61, 229-251 (1987) · Zbl 0617.32014
[21] Malgrange, B.: Polynome de Berstein-Sato et cohomologie ?vanescente, Ast?risque 101-102 (1983)
[22] Malgrange, B.: Sur les images directes deD-modules, Manuscr. Math.50, 49-71 (1985) · Zbl 0572.32014
[23] L? Dung Trang, Mebkhout, Z.: Vari?t?s caract?ristiques et vari?t?s polaires, C.R. Acad. Sci, Paris Ser. I296, 129-132 (1983)
[24] Sabbah, C., Mebkhout, Z.: D-modules et cycles ?vanescents. (Trav. Cours, vol. 35, pp. 204-241) Paris: Hermann 1988
[25] Sabbah, C.: Quelques remarques sur la g?om?trie des espaces conormaux, Ast?risque130, 161-192 (1985)
[26] Sabbah, C.:D-modules et cycles ?vanescents. In: Aroca, J.M. et al. (eds.) G?ometrie alg?brique et applications, III. (Trav. Cours, vol. 24, pp. 53-98) Paris: Hermann 1987
[27] Sato, M., Kawa? T. and Kashiwara M. Hyperfunctions and pseudo-differential equations. In: Komatsu, H. (ed.) Hyperfunctions and pseudo-differential equations. (Lect. Notes Math. vol. 287, pp. 265-529) Berlin Heidelberg New York: Springer 1973
[28] Schapira, P.: Microdifferential systems in the complex domain. (Grundl. Math. vol. 269) Berlin Heidelberg New York: Springer 1985 · Zbl 0554.32022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.