Two problems of Valdivia on distinguished Fréchet spaces. (English) Zbl 0799.46003

Summary: We construct the following spaces:
(a) a Fréchet space \(E\) with basis which is non-distinguished and has no subspace isomorphic to \(\ell_ 1\);
(b) a non-distinguished Fréchet space \(F\) such that every separable subspace of \(F\) is distinguished (even more, every separable subspace of \(F\) has a separable dual).
These examples answer in the negative two questions posed by Valdivia.


46A04 Locally convex Fréchet spaces and (DF)-spaces
46A35 Summability and bases in topological vector spaces
Full Text: DOI EuDML


[1] F. Bastin, Distinguishedness of weighted Fréchet spaces of continuous functions,Proc. Edinburgh Math. Soc. (to appear) · Zbl 0738.46006
[2] Bastin, F.; Bonet, J., Locally bounded noncontinuous linar, forms on strong duals of nondistinguished Köthe echelon spaces, Proc. Amer. Math. Soc., 108, 769-774, (1990) · Zbl 0724.46006
[3] Bierstedt, K. D.; Bonet, J., Stefan Heinrich’s density condition for Fréchet spaces and the characterization of the distinguished Köthe echelon spaces, Math. Nachr., 135, 149-180, (1988) · Zbl 0688.46001
[4] K.D. Bierstedt, R. Meise, Distinguished echelon spaces and the projective description of weighted inductive limits of typeVC(X), p. 169-226 in:Aspects of Mathematics and its Applications, North-Holland Math. Library, 1986
[5] Bonet, J.; Díaz, J. C., Distinguished subspaces and quotients of the Köthe sequence spaces, Bull. Polish Acad. Sci., 39, 177-183, (1991) · Zbl 0777.46007
[6] J. Bonet, J.C. Díaz, Density condition in subspaces and quotients of Fréchet spaces, preprint, 1992
[7] Bonet, J.; Dierolf, S., Fréchet spaces of Moscatelli type, Rev. Math. Univ. Complutense Madrid, 2, 77-92, (1989) · Zbl 0757.46001
[8] J. Bonet, S. Dierolf, On distinguished Fréchet spaces, p. 201-214 in:Progress in Functional Analysis, Math. Studies170, North-Holland, 1992 · Zbl 0785.46003
[9] Bonet, J.; Dierolf, S.; Fernández, C., On the three-space-problem for distinguished Fréchet spaces, Bull. Soc. Roy. Liège, 59, 301-306, (1990) · Zbl 0713.46001
[10] Bonet, J.; Taskinen, J., Non-distinguished Fréchet function spaces, Bull. Soc. Roy. Sci. Liège, 58, 483-490, (1989) · Zbl 0711.46001
[11] Brackebusch, R. E., James Space on General Trees, J. Funct. Anal., 79, 449-475, (1988) · Zbl 0655.46017
[12] Díaz, J. C., A note on isomorphisms between powers of Banach spaces, Collect Math., 38, 137-140, (1987) · Zbl 0662.46014
[13] Fernández, C., On distinguished Fréchet spaces of Moscatelli type, DOGA Tr. J. Math., 15, 129-141, (1991) · Zbl 0970.46501
[14] Ghoussoub, N.; Maurey, B., G_{δ}-embeddings in Hilbert spaces, J. Funct. Anal., 61, 72-97, (1985) · Zbl 0565.46011
[15] Hagler, J., A counterexample to several questions about Banach spaces, Studia Math., 60, 289-308, (1977) · Zbl 0387.46015
[16] Hagler, J.; Odell, E., A Banach space not containing ℓ_{1} whose dual ball is not weak* sequentially compact, Illinois J. Math., 22, 290-294, (1978) · Zbl 0391.46015
[17] James, R. C., A separable somewhat reflexive Banach space with non-separable dual, Bull. Amer. Math. Soc., 80, 738-743, (1974) · Zbl 0286.46018
[18] Kömura, Y., Some examples of linear topological spaces, Math. Ann., 153, 150-162, (1962) · Zbl 0149.33604
[19] G. Köthe,Topological Vector Spaces, I, Springer Verlag, 1969
[20] Lindenstrauss, J.; Stegall, C., Examples of separable spaces which do not contain ℓ_{1} and whose duals are non-separable, Studia Math., 54, 81-105, (1975) · Zbl 0324.46017
[21] P. Pérez Carreras, J. Bonet,Barrelled Locally Convex Spaces, Math. Studies131, North-Holland, 1987
[22] Taskinen, J., Examples of nondistinguished Fréchet spaces, Ann. Acad. Sci. Fenn. Série A.I., 14, 75-88, (1989) · Zbl 0632.46002
[23] M. Valdivia, Fréchet spaces not containing ℓ_{1}, to appear inMath. Japonica
[24] D. Vogt, Distinguished Köthe spaces,Math. Z.202 (1989), 143-146 · Zbl 0661.46008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.