zbMATH — the first resource for mathematics

The full diagonal model of a Bose gas. (English) Zbl 0799.58088
The Hamiltonian of bosons interacting in the volume V in \(\mathbb{R}^ d\) through a pair potential can be written as \[ H = T + {1\over 2V} \sum_{q,k,k'}v(q) a^*_{k + q} a^*_{k'-q} a_ ka_{k'}, \] where \(T\) is a kinetic energy. The authors investigate the full diagonal approximation of this model (by omitting the terms \(q \neq 0\) and \(q \neq k - k'\)): \[ H^{FD} = T + {1\over 2V} \sum_{k,k'} v(k - k') n_ k n_{k'} + {a\over 2V} \biggl\{N^ 2 - \sum_{k} n^ 2_ k\biggr\},\tag{*} \] where \(n_ k\) are occupation numbers, \(N = \sum_ k n_ k\) and \(a = v(0) > 0\). In this model they find in the thermodynamic limit the variational formula for the pressure \[ p^{FD}(\mu) = -\inf {\mathcal E}^ \mu[m],\quad \mu\text{ the chemical potential,} \] where \(m\) is a bounded positive measure on \(\mathbb{R}^ d\). They show that there are two regions: one in which the kinetic term \(T\) dominates and one in which the last term in \((*)\) dominates. This, so- called Huang-Yang-Luttinger term is responsible for the Bose-Einstein condensation. For a large class of potentials there is a critical temperature below which there is a condensation.

58Z05 Applications of global analysis to the sciences
82B10 Quantum equilibrium statistical mechanics (general)
82B21 Continuum models (systems of particles, etc.) arising in equilibrium statistical mechanics
82D05 Statistical mechanical studies of gases
Full Text: DOI
[1] Lee, T.D., Yang, C.N.: The many-body problem in quantum mechanics and quantum statistical mechanics. Phys. Rev.105, 1119–1120 (1957) · doi:10.1103/PhysRev.105.1119
[2] Huang, K., Yang, C.N., Luttinger, J.M.: Imperfect Bose gas with hard-sphere interactions. Phys. Rev.105, 776–784 (1957) · Zbl 0077.21001 · doi:10.1103/PhysRev.105.776
[3] Thouless, D.J.: The quantum mechanics of many-body systems. New York: Academic Press 1961 · Zbl 0103.23502
[4] Yang, C.N., Yang, C.P.: Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interaction. J. Math. Phys.10, 1115–1122 (1969) · Zbl 0987.82503 · doi:10.1063/1.1664947
[5] Dorlas, T.C., Lewis, J.T., Pulé, J.V.: The Yang-Yang thermodynamic formalism and large deviations. Commun. Math. Phys.124, 365–402 (1984). · Zbl 0678.60105 · doi:10.1007/BF01219656
[6] Dorlas, T.C.: Orthogonality and completeness of the Bethe ansatz eigenstates of the nonlinear Schrödinger model. To appear in Commun. Math. Phys. (1993) · Zbl 0773.35071
[7] Davies, E.B.: The thermodynamic limit for an imperfect boson gas. Commun. Math. Phys.28, 69–86 (1972) · doi:10.1007/BF02099372
[8] van den Berg, M., Lewis, J. T., de Smedt, Ph.: Condensation in the imperfect boson gas. J. Stat. Phys.37, 697–707 (1984) · doi:10.1007/BF01010502
[9] Lewis, J.T., Pulé, J.V., Zagrebnov, V.A.: The large deviation principle for the Kac distribution. Helv. Phys. Acta.61, 1063–1078 (1988)
[10] van den Berg, M., Dorlas, T.C., Lewis, J.T., Pulé, J.V.: A perturbed meanfield model of an interacting boson gas and the large deviation principle. Commun. Math. Phys.127, 41–69 (1990) · Zbl 0693.60088 · doi:10.1007/BF02096493
[11] van den Berg, M., Lewis, J.T., Pulé, J.V.: The large deviation principle and some models of an interacting boson gas. Commun. Math. Phys.118, 61–85 (1988) · Zbl 0679.76124 · doi:10.1007/BF01218477
[12] van den Berg, M., Dorlas, T. C., Lewis, J.T., Pulé, J.V.: The pressure in the Huang-Yang-Luttinger model of an interacting boson gas. Commun. Math. Phys.128, 231–245 (1990) · Zbl 0693.60089 · doi:10.1007/BF02108780
[13] Dorlas, T.C., Lewis, J.T., Pulé, J.V.: Condensation in some perturbed meanfield models of a Bose gas. Helv. Phys. Acta64, 1200–1224 (1991)
[14] Varadhan, S.R.S.: Asymptotic probabilities and differential equations. Commun. Pure Appl. Math.19, 261–286 (1966) · Zbl 0147.15503 · doi:10.1002/cpa.3160190303
[15] Girardeau, M.: Relationship between systems of inpenetrable bosons and fermions in one dimension. J. Math. Phys.1, 516–523 (1960) · Zbl 0098.21704 · doi:10.1063/1.1703687
[16] van den Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose-Einstein condensation. Helv. Phys. Acta.59, 1271–1288 (1986)
[17] Bourbaki, N., Éléments de mathématiques, chap IX: Intégration. Paris: Hermann 1969
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.