×

Energy functionals depending on elastic strain and chemical composition. (English) Zbl 0800.49030


MSC:

49J22 Optimal control problems with integral equations (existence) (MSC2000)
26B25 Convexity of real functions of several variables, generalizations
35J20 Variational methods for second-order elliptic equations
46E27 Spaces of measures
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] Alexander, J.I., Johnson, W.C.: Thermochemical equilibrium in solid-fluid systems with curved interfaces, J.Appl.Phys.56, 816-824 (1985) · doi:10.1063/1.336150
[2] Ambrosio, L.: New lower semicontinuity results for integral functionals, Rend. Accad. Naz. Sci. XL Mem. Mat. Sci. Fis. Mat. Natur.105, 1-42 (1987) · Zbl 0642.49007
[3] Ball, J.M.: A version of the fundamental theorem for Young measures. PDE’s and continuum models of phase transitions (Lect. Notes Physics, vol. 344, pp. (Rascle, M., Serre, D., Slemrod, M., eds.) Springer 1989, pp. 207-215 · Zbl 0991.49500
[4] Ball, J.M., Murat, F.: Remarks on Chacon’s biting lemma. Proc. AMS107, 655-663 (1989) · Zbl 0678.46023
[5] Ball, J.M., Zhang, K.: Lower semicontinuity of multiple integrals and the biting lemma. Proc. Royal Soc. Edinburgh114A, 367-379 (1990) · Zbl 0716.49011
[6] Brooks, J.K., Chacon, R.V.: Continuity and compactness of measures. Adv. in Math.37, 16-26 (1980) · Zbl 0463.28003 · doi:10.1016/0001-8708(80)90023-7
[7] Clark, A.E.: Magnetostrictive rare earth-Fe2 compounds. Ferromagnetic materials, vol. 1 (Wohlfarth, E.P. (ed.)) North Holland, 1980, pp. 532-589
[8] Chipot, M., Kinderlehrer, D., Ma, L. (to appear).
[9] Dacorogna, B.: Weak Continuity and Weak Lower Semicontinuity of Non-Linear Functionals. Springer Lecture Notes, vol.922, 1982 · Zbl 0484.46041
[10] Fonseca, I., Kinderlehrer, D., Pedregal, P.: Relaxation in BV(?,?p){\(\times\)}L?(w-*) of functionals depending on strain and composition (to appear) · Zbl 0796.49042
[11] Fonseca, I., Müller, S.: Quasiconvex integrands and lower semicontinuity inL 1. SIAM J. Math Anal.23, 1081-1098 (1992) · Zbl 0764.49012 · doi:10.1137/0523060
[12] Fonseca, I., Müller, S.: Relaxation of quasiconvex functionals in BV(?, ?p) for integrandsf(x, u, ?u). Arch. Rat. Mech. Anal.123, 1-49 (1993) · Zbl 0788.49039 · doi:10.1007/BF00386367
[13] Ioffe, A.D.: On lower semicontinuity of integral functionals. SIAM J. Cont. Optim.15, 521-538 (1977) · Zbl 0361.46037 · doi:10.1137/0315035
[14] Johnson, W.C., Alexander, J.I.: Interfacial conditions for thermochemical equilibrium in two-phase crystals. J. Appl. Phys.59, 2735-2746 (1986) · doi:10.1063/1.336982
[15] Johnson, W.C., Müller, W.H.: Characteristics of phase equilibria in coherent solids. Acta Metall. Mater.39, 89-103 (1991) · doi:10.1016/0956-7151(91)90330-4
[16] Kinderlehrer, D., Pedregal, P.: Characterizations of Young measures generated by gradients. Arch. Rat. Mech. Anal.115, 329-365 (1991) · Zbl 0754.49020 · doi:10.1007/BF00375279
[17] Kinderlehrer, D., Pedregal, P.: Gradient Young measures generated by sequences in Sobolev spaces. J. Geom. Anal.4, 59-90 (1994) · Zbl 0808.46046
[18] Kohn, R.: The relaxation of a double-well energy. Cont. Mech. Thermodyn.3, 193-236 (1991) · Zbl 0825.73029 · doi:10.1007/BF01135336
[19] Larché, F.C., Cahn, J.W.: A nonlinear theory of thermochemical equilibrium of solids under stress. Acta Metall.26, 53-60 (1978) · doi:10.1016/0001-6160(78)90201-8
[20] Larché, F.C., Cahn, J.W.: A nonlinear theory of thermochemical equilibrium of solids under stress. Acta Metall.26, 1579-1589 (1978) · doi:10.1016/0001-6160(78)90067-6
[21] Matos, J.: Thesis. University of Minnesota (1990)
[22] Pedregal, P.: Jensen’s inequality in the Calculus of Variations. Diff. Int. Eq. (to appear) · Zbl 0810.49013
[23] Pedregal, P.: Relaxation in ferromagnetism: the rigid case. J. Non-linear Sci. (to appear) · Zbl 0790.46061
[24] Tartar, L.: Compensated compactness and applications to partial differential equations. Nonlinear analysis and mechanics: Heriot-Watt Symposium, vol. IV, Knops, R. (ed.) Pitman Res. Notes Math.39, 136-212 (1979)
[25] Zhang, K.: Biting theorems for Jacobians and their applications. Anal. Nonlineare7, 345-366 (1990) · Zbl 0717.49012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.