zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A survey of fuzzy clustering. (English) Zbl 0800.68728

MSC:
68T10Pattern recognition, speech recognition
62H30Classification and discrimination; cluster analysis (statistics)
WorldCat.org
Full Text: DOI
References:
[1] Duda, R. O.; Hart, P. E.: Pattern classification and scene analysis. (1973) · Zbl 0277.68056
[2] Devijver, P. A.; Kittler, J.: Pattern recognition: A statistical approach. (1982) · Zbl 0542.68071
[3] Jain, A. K.; Dubes, R. C.: Algorithms for clustering data. (1988) · Zbl 0665.62061
[4] Zadeh, L. A.: Fuzzy sets. Inform. and control 8, 338-353 (1965) · Zbl 0139.24606
[5] Bellman, R.; Kalaba, R.; Zadeh, L. A.: Abstraction and pattern classification. J. math. Anal. and appl. 2, 581-586 (1966) · Zbl 0134.15305
[6] Ruspini, E. H.: A new approach to clustering. Inform. and control 15, 22-32 (1969) · Zbl 0192.57101
[7] Bezdek, J. C.: Pattern recognition with fuzzy objective function algorithms. (1981) · Zbl 0503.68069
[8] Pal, S. K.; Majumdar, D. D.: Fuzzy mathematical approach to pattern recognition. (1986) · Zbl 0603.68091
[9] Dunn, J. C.: A fuzzy relative of the ISODATA process and its use in detecting compact, well-separated clusters. J. cybernetics 3, 32-57 (1974) · Zbl 0291.68033
[10] Zadeh, L. A.: Similaritiy relations and fuzzy orderings. Inform. science, 177-200 (1971) · Zbl 0218.02058
[11] Bezdek, J. C.; Harris, J. D.: Convex decompositions of fuzzy partitions. J. math. Anal. and appl. 67, No. 2, 490-512 (1980) · Zbl 0411.68056
[12] Tamura, S.; Higuchi, S.; Tanaka, K.: Pattern classification based on fuzzy relations. IEEE trans. Syst. man cybern. 1, No. 1, 61-66 (1971) · Zbl 0224.68012
[13] Kandel, A.; Yelowitz, L.: Fuzzy chains. IEEE trans. Syst. man cybern., 472-475 (1974) · Zbl 0283.94013
[14] Dunn, J. C.: A graph theoretic analysis for pattern classification via tamura’s fuzzy relation. IEEE trans. Syst. man cybern. 4, No. 3, 310-313 (1974) · Zbl 0297.68077
[15] Bezdek, J. C.; Harris, J. D.: Fuzzy relations and partitions: an axiomatic basis for clustering. Fuzzy sets and systems 1, 111-127 (1978) · Zbl 0442.68093
[16] Chatterji, B. N.: Character recognition using fuzzy similarity relations. Approximate reasoning in decision analysis, 131-137 (1982)
[17] Ruspini, E. H.: Numerical methods for fuzzy clustering. Information science 2, 319-350 (1970) · Zbl 0205.21301
[18] Ruspini, E. H.: New experimental results in fuzzy clustering. Inform. sciences 6, 273-284 (1973)
[19] Roubens, M.: Pattern classification problems with fuzzy sets. Fuzzy sets and systems 1, 239-253 (1978) · Zbl 0435.68064
[20] Libert, G.; Roubens, M.: Non-metric fuzzy clustering algorithms and their cluster validity. Fuzzy information and decision processes, 417-425 (1982)
[21] Windham, M. P.: Numerical classification of proximity data with assignment measures. J. classification 2, 157-172 (1985)
[22] Hathaway, R. J.; Davenport, J. W.; Bezdek, J. C.: Relational duals of the c-means algorithms. Pattern recognition 22, 205-212 (1989) · Zbl 0673.62050
[23] Bezdek, J. C.; Hathaway, R. J.: Dual object-relation clustering models. Int. J. General systems 16, 385-396 (1990) · Zbl 0701.62070
[24] Bezdek, J. C.; Hathaway, R. J.; Howard, R. E.; Wilson, C. E.; Windham, M. P.: Local convergence analysis of a grouped variable version of coordinate descent. J. optimization theory and applications 54, No. 3, 471-477 (1986) · Zbl 0597.90076
[25] Bezdek, J. C.; Hathaway, R. J.; Windham, M. P.: Numerical comparison of the RFCM and AP algorithms for clustering relational data. Pattern recognition 24, No. 8, 783-791 (1991)
[26] Bezdek, J. C.: A convergence theorem for the fuzzy ISODATA clustering algorithms. IEEE transactions on pattern analysis and machine intelligence 2, No. 1, 1-8 (1980) · Zbl 0441.62055
[27] Bezdek, J. C.; Hathaway, R. J.; Sabin, M. J.; Tucker, W. T.: Convergence theory for fuzzy c-means: counterexamples and repairs. IEEE trans. Syst. man cybern. 17, No. 5, 873-877 (1987) · Zbl 0653.68091
[28] Cannon, R.; Dave, J.; Bezdek, J. C.: Efficient implementation of the fuzzy c-means clustering algorithms. IEEE trans. Pattern anal. Machine intell. 8, No. 2, 248-255 (1986) · Zbl 0602.68084
[29] Hathaway, R. J.; Bezdek, J. C.: Local convergence of the fuzzy c-means algorithms. Pattern recognition 19, 477-480 (1986) · Zbl 0623.62058
[30] Ismail, M. A.; Selim, S. A.: On the local optimality of the fuzzy ISODATA clustering algorithm. IEEE trans. Pattern anal. Machine intell. 8, No. 2, 284-288 (1986) · Zbl 0602.68085
[31] Ismail, M. A.; Selim, S. A.: Fuzzy c-means: optimality of solutions and effective termination of the algorithm. Pattern recognition 19, No. 6, 481-485 (1986) · Zbl 0623.62059
[32] Kamel, M. S.; Selim, S. Z.: A thresholded fuzzy c-means algorithm for semi-fuzzy clustering. Pattern recognition 24, No. 9, 825-833 (1991)
[33] Kim, T.; Bezdek, J. C.; Hathaway, R.: Optimality test for fixed points of the fuzzy c-means algorithm. Pattern recognition 21, No. 6, 651-663 (1988) · Zbl 0662.68099
[34] Sabin, M. J.: Convergence and consistency of fuzzy c-means/ISODATA algorithms. IEEE trans. Pattern anal. Machine intell. 9, 661-668 (1987) · Zbl 0628.62070
[35] Selim, S. Z.; Kamel, M. S.: On the mathematical and numerical properties of the fuzzy c-means algorithm. Fuzzy sets and systems 49, 181-191 (1992) · Zbl 0757.62032
[36] Yang, M. S.: Convergence properties of the generalized fuzzy c-means clustering algorithms. Computers math. Applic. 25, No. 12, 3-11 (1993) · Zbl 0772.68077
[37] Yang, M. S.: On a class of fuzzy classification maximum likelihood procedures. Fuzzy sets and systems 57, No. 3, 365-375 (1993) · Zbl 0807.62049
[38] Hathaway, R. J.; Bezdek, J. C.: On the asymptotic properties of fuzzy c-means cluster prototypes as estimators of mixture subpopulations centers. Commun. statist.-theory and method 15, No. 2, 505-513 (1986) · Zbl 0608.62072
[39] Yang, M. S.; Yu, K. F.: On stochastic convergence theorems for the fuzzy c-means clustering procedure. Int. J. General systems 16, 397-411 (1990) · Zbl 0713.62065
[40] Yang, M. S.; Yu, K. F.: On existence and strong consistency of a class of fuzzy c-means clustering procedures. Cybernetics and systems 23, 583-602 (1992) · Zbl 0781.62097
[41] M.S. Yang, On asymptotic normality of a class of fuzzy c-means clustering procedures, (submitted) · Zbl 0798.62073
[42] Bezdek, J. C.; Coray, C.; Gunderson, R.; Watson, J.: Detection and characterization of cluster substructure: I. Linear structure: fuzzy c-lines. SIAM J. Appl. math. 40, No. 2, 339-357 (1981) · Zbl 0475.62046
[43] Bezdek, J. C.; Coray, C.; Gunderson, R.; Watson, J.: Detection and characterization of cluster substructure: II. Fuzzy c-varieties and convex combinations thereof. SIAM J. Appl. math. 40, No. 2, 358-372 (1981) · Zbl 0475.62047
[44] Bobrowski, L.; Bezdek, J. C.: C-means with l1 and l$\infty $norms. IEEE trans. Syst. man cybern. 21, No. 3, 545-554 (1991) · Zbl 0735.62059
[45] Dave, N. R.: Fuzzy shell-clustering and applications to circle detection in digital images. Int. J. General systems 16, No. 4, 343-355 (1990) · Zbl 0701.62071
[46] Dave, R. N.: Generalized fuzzy c-shells clustering and detection of circular and elliptical boundaries. Pattern recognition 25, No. 7, 713-721 (1992)
[47] Gunderson, R. W.: An adaptive FCV clustering algorithm. Int. J. Man machine studies 19, No. 1, 97-104 (1983) · Zbl 0517.62055
[48] Gustafson, D.; Kessel, W.: Fuzzy clustering with a fuzzy covariance matrix. Proc. IEEE, San Diego, 761-766 (1978)
[49] Jajuga, K.: L1-norm based fuzzy clustering. Fuzzy sets and systems 39, 43-50 (1991) · Zbl 0714.62052
[50] Pedrycz, W.: Algorithms of fuzzy clustering with partial supervision. Patt. recog. Letters 3, 13-20 (1985)
[51] Trauwaert, E.; Kaufman, L.; Rousseeuw, P.: Fuzzy clustering algorithms based on the maximum likelihood principle. Fuzzy sets and systems 42, 213-227 (1991) · Zbl 0741.62065
[52] Cannon, R.; Dave, J.; Bezdek, J. C.; Trivedi, M.: Segmentation of a thematic mapper image using the fuzzy c-means clustering algorithm. IEEE trans. Geo. & remote sensing 24, No. 3, 400-408 (1986)
[53] Dave, R. N.; Bhaswan, K.: Adaptive fuzzy c-shells clustering and detection of ellipses. IEEE trans. On neural networks 3, No. 5, 643-662 (1992)
[54] Hall, L. O.; Bensaid, A. M.; Clarke, L. P.; Velthuizen, R. P.; Silbiger, M. S.; Bezdek, J. C.: A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain. IEEE trans. On neural networks 3, No. 5, 672-682 (1992)
[55] Huntsberger, T. L.; Descalzi, M.: Color edge detection. Pattern recog. Letters 3, 205-209 (1985)
[56] Huntsberger, T. L.; Jacobs, C. L.; Cannon, R. L.: Iterative fuzzy image segmentation. Pattern recog. 18, No. 2, 131-138 (1985)
[57] Keller, J. M.; Subhangkasen, D.; Unklesbay, K.; Unklesbay, N.: An approximate reasoning technique for recognition in color images of beef steaks. Int. J. General systems 16, 331-342 (1990)
[58] Trivedi, M.; Bezdek, J. C.: Low level segmentation of aerial images with fuzzy clustering. IEEE trans. Syst. man cybern. 16, No. 4, 589-597 (1986)
[59] Anderson, I.; Bezdek, J.; Dave, R.: Polygonal shape descriptions of plane boundaries. Systems science and science 1, 295-301 (1982)
[60] Bezdek, J. C.; Anderson, I.: Curvature and tangential deflection of discrete arcs. IEEE trans. Pattern anal. Machine itell. 6, No. 1, 27-40 (1984) · Zbl 0537.68093
[61] Bezdek, J. C.; Anderson, I.: An application of the c-variaties clustering algorithms to polygonal curve Fitting. IEEE trans. Syst. man cybern. 15, No. 5, 637-641 (1985)
[62] Chan, K. P.; Cheung, Y. S.: Clustering of cluster. Pattern recognition 25, 211-217 (1992)
[63] Huntsberger, T. L.; Ajjimarangsee, P.: Parallel self-organizing feature maps for unsupervised pattern recognition. Int. J. General systems 16, 357-372 (1990)
[64] Bezdek, J. C.; Dunn, J. C.: Optimal fuzzy partitions: A heuristic for estimating the parameters in a mixture of normal distributions. IEEE transactions on computers 24, No. 8, 835-838 (1975) · Zbl 0308.68078
[65] Bezdek, J. C.; Hathaway, R. J.; Huggins, V. J.: Parametric estimation for normal mixtures. Pattern recognition letters 3, 79-84 (1985) · Zbl 0555.62025
[66] Davenport, J. W.; Bezdek, J. C.; Hathaway, R. J.: Parameter estimation for finite mixture distributions. Computers math. Applic. 15, No. 10, 819-828 (1988) · Zbl 0648.62030
[67] Pal, S. K.; Mitra, S.: Fuzzy dynamic clustering algorithm. Pattern recognition letter 11, 525-535 (1990) · Zbl 0825.68573
[68] M.S. Yang and C.F. Su, On parameter estimation for the normal mixtures based on fuzzy clustering algorithms, (submitted)
[69] Bezdek, J. C.: Numerical taxonomy with fuzzy sets. J. math. Bio. 1, No. 1, 57-71 (1974) · Zbl 0403.62039
[70] Bezdek, J. C.; Castelaz, P.: Prototype classification and feature selection with fuzzy sets. IEEE trans. Syst. man cybern. 7, No. 2, 87-92 (1977) · Zbl 0359.68120
[71] Bezdek, J. C.; Fordon, W. A.: The application of fuzzy set theory to medical diagnosis. Advances in fuzzy set theory and applications, 445-461 (1979)
[72] Granath, G.: Application of fuzzy clustering and fuzzy classification to evaluate provenance of glacial till. J. math geo. 16, No. 3, 283-301 (1984)
[73] Mcbratney, A. B.; Moore, A. W.: Application of fuzzy sets to climatic classification. Agricultural and forest meteor 35, 165-185 (1985)
[74] Windham, C.; Windham, M. P.; Wyse, B.; Hansen, G.: Cluster analysis to improve food classification within commodity groups. J. amer. Diet. assoc. 85, No. 10, 1306-1315 (1985)
[75] Ballard, D. H.; Brown, C. M.: Computer vision. (1982)
[76] Illingworth, J.; Kittler, J.: A survey of Hough transforms. Computer vision, graphics and image processing, 87-116 (1988)
[77] Davies, E. R.: Finding ellipses using the generalized Hough transform. Pattern recognition lett. 9, 87-96 (1989)
[78] Bezdek, J. C.; Hathaway, R. J.: Numerical convergence and interpretation of the fuzzy c-shells clustering algorithm. IEEE trans. On neural networks 3, No. 5, 787-793 (1992)
[79] Krishnapuram, R.; Nasraoui, O.; Frigui, H.: The fuzzy c spherical shells algorithm: A new approach. IEEE trans on neural networks 3, No. 5, 663-671 (1992)
[80] Mclachlan, G. J.; Basfork, K. E.: Mixture models: inference and applications to clustering. (1988)
[81] Bobrowski, L.; Niemiro, W.: A method of synthesis of linear discriminant function in the case of nonseparability. Pattern recognition 17, No. 2, 205-210 (1984) · Zbl 0538.62053
[82] Bloomfield, P.; Steiger, W. L.: Least absolute deviations. (1983) · Zbl 0536.62049
[83] Fix, E.; Jr., J. L. Hodges: Discriminatory analysis, nonparametric discrimination, consistency properties. Project 21-49-004, report no.4 (1951) · Zbl 0715.62080
[84] Cover, T. M.; Hart, P. E.: Nearest neighbor pattern classification. IEEE trans. Inform. theory 13, 21-27 (1967) · Zbl 0154.44505
[85] Cover, T. M.: Estimation by the nearest neighbor rule. IEEE trans. Inform. theory 14, 50-55 (1968) · Zbl 0157.49404
[86] Wagner, T. J.: Convergence of the nearest neighbor rule. IEEE trans. Information theory 17, 566-571 (1971) · Zbl 0225.62040
[87] Wong, M. A.; Lane, T.: A kth-nearest neighbor clustering procedure. J. R. Statist. soc. 45, No. 3, 362-368 (1983) · Zbl 0535.62055
[88] Duin, R. P. W.: The use of continuous variables for labelling objects. Patt. recog. Letters 1, 15-20 (1982)
[89] Jóźwik, A.: A learning scheme for a fuzzy k-NN rule. Pattern recognition lett. 1, 287-289 (1983)
[90] Bezdek, J. C.; Chuah, S.; Leep, D.: Generalized k-nearest neighbor rules. Fuzzy sets and systems 18, 237-256 (1986) · Zbl 0608.62073
[91] Keller, J. M.; Gray, M. R.; Givens, J. A.: A fuzzy k-nearest neighbor algorithm. IEEE trans. Syst. man cybern. 15, No. 4, 580-585 (1985)
[92] Béreau, M.; Dubuisson, B.: A fuzzy extended k-nearest neighbors rule. Fuzzy sets and systems 44, 17-32 (1991) · Zbl 0737.62051
[93] Yang, M. S.; Chen, C. T.: On strong consistency of the fuzzy generalized nearest neighbor rule. Fuzzy sets and systems 60 (1993) · Zbl 0795.62059
[94] M.S. Yang and C.T. Chen, Convergence rate of the fuzzy generalized nearest neighbor rule, Computers Math. Applic. (to appear) · Zbl 0794.60022
[95] Bezdek, J. C.: Cluster validity with fuzzy sets. J. cybernetics 3, 58-73 (1974) · Zbl 0294.68035
[96] Dubes, R.; Jain, A. K.: Validity studies in clustering methodologies. Pattern recognition 11, 235-254 (1979) · Zbl 0415.62041
[97] Jain, A. K.; Moreau, J. V.: Bootstrap technique in cluster analysis. Pattern recognition 20, No. 5, 547-568 (1987)
[98] Rivera, F. F.; Zapata, E. L.; Carazo, J. M.: Cluster validity based on the hard tendency of the fuzzy classification. Pattern recognition letters 11, 7-12 (1990) · Zbl 0800.68800
[99] Roubens, M.: Fuzzy clustering algorithms and their cluster validity. Eur. J. Oper. research 10, 294-301 (1982) · Zbl 0485.62055
[100] Trauwaert, E.: On the meaning of dunn’s partition coefficient for fuzzy cluster. Fuzzy sets and systems 25, 217-242 (1988) · Zbl 0647.62059
[101] Windham, M. P.: Cluster validity for the fuzzy c-means clustering algorithm. IEEE trans. Pattern anal. Machine intell. 4, No. 4, 357-363 (1982)
[102] Wong, M. A.: A bootstrap testing procedure for investigating the number of subpopulations. J. statist. Comput. simul. 22, 99-112 (1985)
[103] Xie, X. L.; Beni, G.: A validity measure for fuzzy clustering. IEEE trans. Pattern anal. Machine intell. 13, 841-847 (1991)