×

zbMATH — the first resource for mathematics

Exact model matching of linear systems using generalized sampled-data hold functions. (English) Zbl 0800.93329

MSC:
93B50 Synthesis problems
93B52 Feedback control
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Al-Rahmani, H.M.; Franklin, G.F., Linear periodic systems: eigenvalue assignment using discrete periodic feedback, IEEE trans. automat. contr., 34, 99-103, (1989) · Zbl 0657.93024
[2] Anderson, B.D.O.; Moore, J.B., Time-varying feedback laws for decentralized control, IEEE trans. automat. contr., 26, 1133-1139, (1981) · Zbl 0473.93007
[3] Arvanitis, K.G., New techniques for the design of time-varying and multirate feedback controllers for linear multivariable systems, (), under completion · Zbl 0878.93048
[4] Arvanitis, K.G.; Paraskevopoulos, P.N., Uniform exact model matching for a class of linear time-varying analytic systems, Syst. contr. lett., 19, 313-323, (1992) · Zbl 0785.93061
[5] Arvanitis, K.G.; Paraskevopoulos, P.N., Exact model matching of linear systems using multirate sampled-data controllers, (), 1688-1692 · Zbl 0841.93041
[6] Aström, K.J.; Wittenmark, B., ()
[7] Brunovsky, P., A classification of linear controllable systems, Kybernetica, 3, 173-187, (1970) · Zbl 0199.48202
[8] Chammas, A.B.; Leondes, C.T., On the design of linear time invariant systems by periodic output feedback, Int. J. contr., 27, 885-903, (1978), Part I and II · Zbl 0388.93022
[9] Chammas, A.B.; Leondes, C.T., Optimal control of stochastic linear systems by discrete output feedback, IEEE trans. automat. contr., 23, 921-926, (1978) · Zbl 0393.93059
[10] Chammas, A.B.; Leondes, C.T., On the finite time control of linear systems by piecewise constant output feedback, Int. J. contr., 30, 227-237, (1979) · Zbl 0412.93012
[11] Greshak, J.P.; Vergese, G.C., Periodically varying compensation of time invariant systems, Syst. contr. lett., 2, 88-93, (1982) · Zbl 0489.93042
[12] Ho, B.L.; Kalman, R.E.; Ho, B.L.; Kalman, R.E., Effective construction of linear state variable models from input/output functions, (), 545-548 · Zbl 0145.12701
[13] Kabamba, P.T., Monodromy eigenvalue assignment in linear periodic systems, IEEE trans. automat. contr., 31, 950-952, (1986) · Zbl 0596.93022
[14] Kabamba, P.T., Control of linear systems using generalized sampled-data hold functions, IEEE trans. automat. contr., 32, 772-783, (1987) · Zbl 0627.93049
[15] Kaczorek, T., Pole assignment for linear discrete-time systems by periodic output feedbacks, Syst. contr. lett., 6, 267-269, (1985) · Zbl 0579.93026
[16] Kailath, T., ()
[17] Khargonekar, P.P.; Poolla, K.; Tannenbaum, H., Robust control of linear time invariant plants using periodic compensation, IEEE trans. automat. contr., 30, 1088-1096, (1985) · Zbl 0573.93013
[18] Paraskevopoulos, P.N.; Arvanitis, K.G., Output feedback uniform decoupling problem of linear time-varying analytic systems, Int. J. systems sci., 23, 2037-2061, (1992) · Zbl 0784.93067
[19] Paraskevopoulos, P.N.; Koumboulis, F.N., A new approach to the decoupling problem of linear time-invariant systems, J. franklin inst., 329, 347-369, (1992) · Zbl 0761.93029
[20] Paraskevopoulos, P.N.; Koumboulis, F.N.; Anastasakis, D.F., Exact model matching of generalized state-space systems, Journal of optimization theory and applications (JOTA), 76, 57-85, (1992) · Zbl 0791.93012
[21] Popov, V.M., Invariant description of linear controllable systems, SIAM J. contr., 10, 252-264, (1972) · Zbl 0251.93013
[22] Toivonen, H.T., Sampled-data control of continuous-time systems with an H∞ optimality criterion, Automatica, 28, 45-54, (1992) · Zbl 0746.93062
[23] Wang, S.H., Stabilization of decentralized control systems via time varying controllers, IEEE trans. automat. contr., 27, 741-744, (1982) · Zbl 0478.93043
[24] Willems, J.L.; Kucera, V.; Brunovsky, P., On the assignment of invariant factors by time-varying feedback strategies, Syst. contr. lett., 4, 75-80, (1984) · Zbl 0553.93031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.