×

A survey of models, analysis tools and compensation methods for the control of machines with friction. (English) Zbl 0800.93424


MSC:

93B52 Feedback control
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ackermann, J.; Müller, P. C., Dynamical behavior of nonlinear multibody system due to Coulomb friction and backlash, (IFAC/IFIP/IMACS Int. Symp. on the Theory of Robots. IFAC/IFIP/IMACS Int. Symp. on the Theory of Robots, Wein (1986)), 289-295
[2] Amin, B., The reliability of describing function predictions for systems with friction, (M.S. Thesis (1993), Dept. of Electrical Engineering and Computer Science, University of Wisconsin: Dept. of Electrical Engineering and Computer Science, University of Wisconsin Milwaukee)
[3] Amontons, G., On the resistance originating in machines, (Proc. of the French Royal Academy of Sciences (1699)), 206-222
[4] Anderson, B. D.O.; Bitmead, R. R.; Johnson, C. R.; Kokotovic, P. V.; Kosut, R. L.; Marells, I. M.Y.; Praly, L.; Riedle, B. D., Stability of Adaptive Systems, Passivity and Averaging Analysis (1986), MIT Press: MIT Press Cambridge · Zbl 0722.93036
[5] Armstrong, B., Dynamics for robot control: friction modeling and ensuring excitation during parameter identification, (Stanford Computer Science Memo STAN-CS-88-1205. Stanford Computer Science Memo STAN-CS-88-1205, Ph.D. Thesis (1988), Dept. of Electrical Engineering, Stanford University)
[6] Armstrong, B., Control of machines with non-linear low-velocity friction: a dimensional analysis, (Proc. of the First International Symposium on Experimental Robotics. Proc. of the First International Symposium on Experimental Robotics, Montreal, Quebec (1989)), 180-195
[7] Armstrong, B., On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics, Int. J. of Robotics Research, 8, 6, 28-48 (1989)
[8] Armstrong-Hélouvry, B., Stick-slip arising from Stribeck friction, (Proc. 1990 Inter. Conf. on Robotics and Automation (1990), IEEE: IEEE Cincinnati), 1377-1382
[9] Armstrong-Hélouvry, B., Control of Machines with Friction (1991), Kluwer Academic Publishers: Kluwer Academic Publishers Norwell, MA · Zbl 0782.93003
[10] Armstrong-Hélouvry, B., A perturbation analysis of stick-slip, (Ibrahim, R. A.; Soom, A., Friction-Induced Vibration, Chatter, Squeal, and Chaos, Proc. ASME Winter Annual Meeting, Anaheim, DE-Vol. 49 (1992), ASME: ASME NY), 41-48
[11] Armstrong-Hélouvry, B., Stick-slip and control in low-speed motion, IEEE Trans. on Automatic Control, 38, 10, 1483-1496 (1993)
[12] Armstrong-Hélouvry, B.; Dupont, P., Friction modelling for controls, and Compensation Techniques for Servos with Friction, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco; CA), 1905-1915
[13] Asada, H.; Youcef-Toumi, K., Analysis and design of a direct-drive arm with a five-bar-link parallel drive mechanism, J. of Dynamic Systems, Measurement and Control, 106, 2, 225-230 (1984)
[14] Åström, K. J.; Wittenmark, B., Adaptive Control (1989), Addison-Wesley: Addison-Wesley Menlo Park, Reading, MA · Zbl 0217.57903
[15] Atherton, D. P., Nonlinear Control Engineering (1975), Van Nostrand Reinhold Co: Van Nostrand Reinhold Co London · Zbl 0568.93032
[16] Auslander, D. M.; Dass, K., Stopping: the endpoint of mechanical motion control, Electrosoft, 1, 3, 166-182 (1990)
[17] Bannerjee, A. K., Influence of kinetic friction on the critical velocity of stick-slip motion, Wear, 12, 2, 107-116 (1968)
[18] Bell, R.; Burdekin, M., Dynamic behavior of plain slideways, (Proc. of the Instn. of Mechanical Engineers, Vol. 181 (1966)), 169-183, pt. 1
[19] Bell, R.; Burdekin, M., A study of the stick-slip motion of machine tool feed drives, (Proc. of the Instn. of Mechanical Engineers, Vol. 184 (1969)), 543-560, pt. 1
[20] Bennett, S., A History of Control Engineering (1979), Peter Peregrinos: Peter Peregrinos Sterenge · Zbl 0812.01020
[21] Bentsman, J., Oscillations-induced transitions and their application in control of dynamical systems, J. of Dynamic Systems, Measurement and Control, 112, 3, 313-319 (1990) · Zbl 0722.93048
[22] Bernard, J. E., The simulation of Coulomb friction in mechanical systems, Simulation, 34, 1, 11-16 (1980)
[23] Biel, C., Die Reibung in Glietlagern bie Zusatz von Voltool zu Mineralol und bie Veranderung der Unlaufzahl und der Temperatur, Zeitschrift des Vereines Seutscher Ingenieure, 64, 449-483 (1920)
[24] Bifano, T.; Dow, T., Real time control of spindle runout, Optical Engineering, 24, 5, 888 (1985)
[25] Blackwell, C. C.; Sirlin, S. W.; Laskin, R. A., Precision pointing of scientific instruments on space station: The LFGGREC perspective, (Proc. IEEE National Aerospace and Electronics Conf. NAECON. Proc. IEEE National Aerospace and Electronics Conf. NAECON, 1988 (1988), IEEE: IEEE Dayton), 566-573
[26] Blau, P. J., A model for run-in and other transitions in sliding friction, J. of Tribology, 109, 3, 537-544 (1987)
[27] Bliman, P. A., Mathematical study of the Dahl’s friction model, Euro. J. Mech., A/Solids, 11, 6, 835-848 (1993) · Zbl 0766.73059
[28] Bliman, P. A.; Sorine, M., Friction modelling by hysteresis operators. applications to Dahl, Stiction and Stribeck effects, (Proc. Conference on Models of Hysteresis (1991), Pitman Research Notes in Mathematics: Pitman Research Notes in Mathematics Trento, Italy) · Zbl 0798.34006
[29] Bliman, P. A.; Sorine, M., A system-theoretic approach of systems with hysteresis. Application to friction modelling and compensation, (European Control Conference, ECC’93. European Control Conference, ECC’93, Groningen, The Netherlands (1993)), 1844-1845
[30] Bo, L. C.; Pavelescu, D., The friction-speed relation and its influence on the critical velocity of the stick-slip motion, Wear, 82, 3, 277-289 (1982)
[31] Bogoliubov, N. N.; Mitropolsky, Y. A., Asymptotic Methods in the Theory of Non-linear Oscillations (1961), Gordon and Beach: Gordon and Beach NY · Zbl 0151.12201
[32] (Booser, E. R., CRC Handbook of Lubrication (1984), CRC Press: CRC Press Boca Raton, FL)
[33] Bowden, F. P. (1950). BBC Broadcast.; Bowden, F. P. (1950). BBC Broadcast.
[34] Bowden, F. P.; Leben, L., The nature of sliding and the analysis of friction, (Proc. of the Royal Society, Series A, Vol. 169 (1939)), 371-391
[35] Bowden, F. P.; Tabor, D., The area of contact between stationary and between moving surfaces, (Proc. of the Royal Society, Series A, Vol. 169 (1939)), 391-413
[36] Bowden, F. P.; Tabor, D., Friction and Lubrication (1956), John Wiley and Sons: John Wiley and Sons NY · Zbl 0987.74002
[37] Bowden, F. P.; Tabor, D., Friction—an Introduction to Tribology, ((1973), Anchor Press: Anchor Press Doubleday), Reprinted 1982, Malabar: Krieger Publishing Co, NY.
[38] Brandenburg, G., Stability of a speed-controlled elastic two-mass system with backlash and Coulomb friction and optimization by a load observer, (Borne, P.; Tzafestas, Applied Modelling and Simulation Technological Systems. Applied Modelling and Simulation Technological Systems, IFAC, Lilly. Applied Modelling and Simulation Technological Systems. Applied Modelling and Simulation Technological Systems, IFAC, Lilly, Proc. IMACS-IFACS Symp. on Modelling and Simulation for Control of Lumped and Dist. Parameter Systems (1986), Elsevier: Elsevier Amsterdam), 371-381
[39] Brandenburg, G.; Schäfer, U., Influence and partial compensation of simultaneously acting backlash and Coulomb friction in a position- and speed-controlled elastic two-mass system, (Proc. 2nd European Conf. on Power Electronics and Applications (1987), EPE: EPE Grenoble), 1041-1047
[40] Brandenburg, G.; Schäfer, U., Stability analysis and optimization of a position-controlled elastic two-mass-system with backlash and Coulomb friction, (Proc. 12th IMACS World Congress (1988), IMACS: IMACS Paris), 220-223
[41] Brandenburg, G.; Schäfer, U., Influence and partial compensation of simultaneously acting backlash and Coulomb friction in a position- and speed-controlled elastic two-mass system, (Proc. 2nd Int. Conf. on Electrical Drives (1988), ICED: ICED Poicina Brasov)
[42] Brandenburg, G.; Schäfer, U., Influence and adaptive compensation of simultaneously acting backlash and Coulomb friction in elastic two-mass systems of robots and machines tools, (Inter. Conf. on Control and Applications (1989), IEEE: IEEE Jerusalem), paper WA-4-5
[43] Brandenburg, G.; Schäfer, U., Influence and compensation of Coulomb friction in industrial pointing and tracking systems, (Proc. of the Indus. App. Soc. Annual Meeting (1991), IEEE: IEEE Dearborn, MI), 1407-1413
[44] Brockley, C. A.; Cameron, R.; Potter, A. F., Friction-induced vibration, J. of Lubrication Technology, 89, 2, 101-108 (1967)
[45] Brockley, C. A.; Davis, H. R., The time-dependence of static friction, J. of Lubrication Technology, 90, 1, 35-41 (1968)
[46] Brogan, W. L., Modern Control Theory (1991), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0159.13104
[47] Budanov, V. B.; Kudinov, V. A.; Tolstoi, D. M., Interaction of friction and vibration, Soviet J. of Friction and Wear, 1, 1, 79-89 (1980)
[48] Burdekin, M.; Back, N.; Cowley, A., Experimental study of normal and shear characteristics of machined surfaces in contact, J. of Mechanical Engineering Science, 20, 3, 129-132 (1978)
[49] Cameron, A., On a unified theory of boundary lubrication, (Proc. of 11th Leeds-Lyon Symp. on Tribology. Proc. of 11th Leeds-Lyon Symp. on Tribology, Leeds (1984), Butterworths: Butterworths London)
[50] Canudas de Wit, C., Adaptive Control of Partially Known Systems—Theory and Applications (1988), Elsevier: Elsevier Amsterdam · Zbl 0685.93046
[51] Canudas de Wit, C.; Åström, K. J.; Braun, K., Adaptive friction compensation in DC motor drives, IEEE J. of Robotics and Automation, RA-3, 6 (1987)
[52] Canudas de Wit, C.; Noel, P.; Aubin, A.; Brogliato, B., Adaptive friction compensation in robot manipulators: low-velocities, The Inter. J. of Robotics Research, 10, 3, 189-199 (1991)
[53] Canudas de Wit, C.; Noel, P.; Aubin, A.; Brogliato, B.; Drevet, P., Adaptive friction compensation in robot manipulators: Low velocities, (Proc. Inter. Conf. on Robotics and Automation (1989), IEEE: IEEE Scottsdale), 1352-1357
[54] Canudas de Wit, C.; Olsson, H.; Åström, K. J.; Lischinsky, P., Dynamic friction models and control design, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco, CA), 1920-1926 · Zbl 0821.93007
[55] Canudas de Wit, C.; Seront, V., Robust adaptive friction compensation, (Proc. Inter. Conf. on Robotics and Automation (1990), IEEE: IEEE Cincinnati, OH), 1383-1389
[56] Cebuhar, W. A., Smoothing and approximate linearization of discontinuous control systems, (Ph.D. Thesis (1988), Dept. of Applied Mathematics, Harvard University) · Zbl 0666.93057
[57] Chau, W. K., A critical analysis of dithering algorithms for image processing, (IEEE Region 10 Conf. on Computers and Communication Systems (1990), IEEE: IEEE HongKong), 309-313
[58] Cheng, J. H.; Kikuchi, N., An incremental constitutive relation of unilateral contact friction for large deformation analysis, J. of Applied Mechanics, 52, 3, 639-648 (1985) · Zbl 0568.73113
[59] Cheok, K. C.; Hu, H.; Loh, N. K., Modeling and identification of a class of servomechanism systems with stick-slip friction, J. of Dynamic Systems, Measurement and Control, 110, 3, 324-328 (1988)
[60] Chou, W., Dithering and its effects on sigma delta and multi-stage sigma delta modulation, (IEEE Inter. Symp. on Circuits of Systems, Part 1 (1990), IEEE: IEEE New Orleans), 268-271
[61] Cincinnati Milacron (1986). Revised Stick-Slip Test Procedure.; Cincinnati Milacron (1986). Revised Stick-Slip Test Procedure.
[62] Clingman, W. D., Flexure bearing reduces startup friction, NASA Tech Briefs, 15, 11, 72-74 (1991)
[63] Cockerham, G.; Cole, M., Stick-slip stability by analogue simulation, Wear, 36, 2, 189-198 (1976)
[64] Cockerham, G.; Symmons, G. R., Stability criterion for stick-slip motion using a discontinuous dynamic friction model, Wear, 40, 1, 113-120 (1976)
[65] Craig, J. J., Adaptive Control of Mechanical Manipulators (1987), Addison-Wesley: Addison-Wesley Reading, MA
[66] Craig, J. J., Adaptive Control of Mechanical Manipulators (1987), Addison-Wesley: Addison-Wesley Reading, MA
[67] Craig, J. J., Adaptive control of mechanical manipulators, ((1986), Ph.D. Thesis: Ph.D. Thesis MA)
[68] Cutkosky, M. R.; Jourdain, J. M.; Wright, P. K., Skin materials for robotic fingers, (Proc. 1987 Inter. Conf. on Robotics and Automation (1987), IEEE), 1649-1654
[69] Cutkosky, M. R.; Wright, P. K., Friction, stability and the design of robotic fingers, The Int. J. of Robotics Research, 5, 4, 20-37 (1986)
[70] Czichos, H., Tribology (1978), Elsevier: Elsevier Amsterdam
[71] Da Vinci, L., The Notebooks (1519), Dover: Dover NY
[72] Dahl, P. R., A solid friction model. TOR-158(3107-18) (1968), The Aerospace Corporation: The Aerospace Corporation El Segundo, CA
[73] Dahl, P. R., Solid friction damping of mechanical vibrations, AIAA J., 14, 12, 1675-1682 (1976)
[74] Dahl, P. R., Measurement of solid friction parameters of ball bearings, (Proc. of 6th Annual Symp. on Incremental Motion, Control Systems and Devices (1977), University of Illinois: University of Illinois ILO)
[75] Derjaguin, B. V.; Push, V. E.; Tolstoi, D. M., A theory of stick-slip sliding of solids, J. of Technical Physics (Moscow), 6 (1956)
[76] Derjaguin, B. V.; Push, V. E.; Tolstoi, D. M., A theory of stick-slip sliding of solids, (Proc. of the Conference on Lubrication and Wear (1957), Instn. Mech. Engs: Instn. Mech. Engs London), 257-268
[77] DeWeerth, S. P.; Nielsen, L.; Mead, C. A.; Åström, K. J., A simple neuron servo, IEEE Trans. on Neural Networks, 2, 2, 248-251 (1991)
[78] Dieterich, J. H., Modeling of rock friction: 1. experimental results and constitutive equations, J. of Geophysical Research, 84, B5, 2161-2168 (1979)
[79] Dieterich, J. H., Micro-mechanics of slip instabilities with rate- and state-dependent friction, Eos, Trans. Am. Geophys. Union (1991)
[80] Dohring, M. E.; Lee, E.; Newman, W. S., A load-dependent transmission friction model: theory and experiments, (Proc. 1993 Inter. Conf. on Robotics and Automation (1993), IEEE), 430-436, Atlanta, GA
[81] Dokos, S. J., Sliding friction under extreme pressures-1, J. of Applied Mechanics, 13, 148-156 (1946), (Series A)
[82] Dowson, D., History of Tribology (1979), Longman Ltd: Longman Ltd London
[83] Dowson, D.; Higginson, G. R., Elastohydrodynamic lubrication—the fundamentals of roller and gear lubrication (1966), Pergamon Press: Pergamon Press Oxford
[84] Dudley, B. R.; Swift, H. W., Frictional relaxation oscillations, Philosophical Magazine, 40, 849-861 (1949), (Series 7) · Zbl 0032.31704
[85] Dupont, P. E., The effect of Coulomb friction on the existence and uniqueness of the forward dynamics problems, (Proc. 1992 Inter. Conf. on Robotics and Automation. Proc. 1992 Inter. Conf. on Robotics and Automation, Nice, France (1992)), 1442-1447
[86] Dupont, P. E., The use of compliance to resolve the existence and uniqueness of the forward dynamics solution with Coulomb friction, (Proc. of the CSME Forum 1992 (1992), CSME: CSME Montreal, Canada), 537-542
[87] Dupont, P. E., The effect of friction on the forward dynamics problem, Int. J. Robotics Research, 12, 2, 164-179 (1993)
[88] Dupont, P. E., Avoiding stick-slip through PD control, IEEE Trans. on Automatic Control, 39, 5, 1059-1097 (1994) · Zbl 0800.93096
[89] Dupont, P. E.; Bapna, D., Stability of sliding frictional surfaces with varying normal force, Journal of Vibration and Acoustics, 116, 2, 237-242 (1992), Submitted to
[90] Dupont, P.; Dunlap, E., Friction modeling and control in boundary lubrication, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco, CA), 1915-1919
[91] Ehrich, N. E., An investigation of control strategies for friction compensation, (M.S. Thesis (1991), Dept. of Electrical Engineering, University of Maryland: Dept. of Electrical Engineering, University of Maryland MA)
[92] Eismann, P. (1992). Private Communication.; Eismann, P. (1992). Private Communication.
[93] Ellison, B.; Richi, J., Inertial stabilization of periscope sights band driven three axle gimbal, (Taylor, W. H., Optical Systems Engineering III (1983), SPIE: SPIE Los Angles), 107-120
[94] Eschmann, P., Ball and Roller Bearings Theory, Design and Application (1985), John Wiley and Sons: John Wiley and Sons NY, revised by L. Hasbargen and J. Brändlein
[95] Estler, R. B., What’s new in preventive maintenance for gears and bearings, (Conf. of the American Society of Lubrication Engineers (1980), ASLE: ASLE Baltimore, MA)
[96] Fatunla, S. O., Numerical Methods for Initial Value Problems in Ordinary Differential Equations (1988), Academic Press: Academic Press Boston, MA · Zbl 0659.65071
[97] Facchiano, D. L.; Vinci, J. N., EP industrial gear oils—a look at additive functions and a comparison of sulfur phosphorus and leaded gear oils, Lubrication Engineering, 40, 10, 598-604 (1984)
[98] Friedland, B.; Mentzelopoulou, S., Friction estimation in multimass systems, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco, CA), 1927-1931
[99] Friedland, B.; Park, Y.-J., IEEE Trans. on Automatic Control, 37, 10, 1609-1612 (1992) · Zbl 0850.93402
[100] Friedman, H. D.; Levesque, P., Reduction of static friction by sonic vibrations, J. Appl. Physics, 30, 10, 1572-1575 (1959)
[101] Fuller, D. D., Theory and Practice of Lubrication for Engineers (1984), John Wiley and Sons: John Wiley and Sons NY
[102] Furusho, J.; Hagao, H.; Sano, A.; Naruse, M., Vibration control of robot arm using joint torque feedback, Trans. Japan Soc. of Mech. Eng., C-56, 528, 119-126 (1990)
[103] Futami, S.; Furutani, A.; Yoshida, S., Nanometer positioning and its micro-dynamics, Nanotechnology, 1, 1, 31-37 (1990)
[104] Gao, C.; Kuhlmann-Wilsdorf, D., On stick-slip and the velocity dependence of friction at low speeds, J. of Tribology, 112, 354-360 (1990), (April)
[105] Gassenfeit, E. H.; Soom, A., Friction coefficients measured at lubricated planar contacts during start-up, J. of Tribology, 110, 3, 533-538 (1988)
[106] Germann, L.; Braccio, J., Fine-steering mirror technology supports 10 nanoradian systems, Optical Engineering, 29, 11, 1351-1359 (1990)
[107] Gilbart, J. W.; Winston, G. C., Adaptive compensation for an optical tracking telescope, Automatica, 10, 2, 125-131 (1974)
[108] Gitis, N. V., Assessing the anti-stick properties of slideway materials, Soviet Engineering Research, 57, 3, 21-22 (1986)
[109] Gitis, N. V., Study of anti-stick-slip properties of machine tool guideway materials, Soviet J. of Friction and Wear, 7, 5, 72-76 (1986)
[110] Godfrey, D., Vibration reduces metal to metal contact and causes an apparent reduction in friction, ASLE Transactions, 10, 2, 183-192 (1967)
[111] Gogoussis, A.; Donath, M., Modeling robots: a real time method for solving the forward dynamics problem incorporating friction, (Proc. of the US—Japan Symposium on Flexible Automation (1988), ASME: ASME Minneapolis, MN)
[112] Gogoussis, A.; Donath, M., A method for the real time solution of the forward dynamics problem for robots incorporating friction, Trans. ASME, J. Dyn. Sys., Meas. and Control, 112, 4, 630-639 (1990)
[113] Goyal, S.; Ruina, A.; Papadopouls, J., Planar sliding with dry friction, part 1. Limit surface and moment function, Wear, 143, 2, 307-330 (1991)
[114] Gu, J.; Rice, J.; Ruina, A.; Tse, S., Slip motion and stability of a single degree of freedom elastic system with rate and state dependent friction, J. Mech. Phys. Solids, 32, 3, 167-196 (1984) · Zbl 0542.73017
[115] Haessig, D. A.; Friedland, B., On the modeling and simulation of friction, J. of Dynamic Systems, Measurement and Control, 113, 3, 354-362 (1991)
[116] Halling, J., Principles of Tribology (1975), Macmillan: Macmillan London
[117] Hamrock, B. J., Lubrication of machine elements, (Kutz, M., Mechanical Engineers’ Handbook (1986), John Wiley and Sons: John Wiley and Sons NY)
[118] Harmer, J. D., The jerking motion caused by static friction in position control systems, (Automatic and Manual Control (1952), Academic Press: Academic Press NY)
[119] Hansson, A.; Gruber, P.; Todtli, J., Fuzzy anti-reset windup for PID controllers, (Proc. World Congress on Automatic Control (1993), IFAC: IFAC Sidney, Australia)
[120] Harnoy, A.; Friedland, B., Dynamic friction model of lubricated surfaces for precise motion control, Tribology Transactions (1994), in press
[121] Harris, T. A., Rolling Bearing Analysis (1984), John Wiley and Sons: John Wiley and Sons NY
[122] Hashimoto, M., Robot motion control based on joint torque sensing, (Proc. Inter. Conf. on Robotics and Automation (1989), IEEE: IEEE Scottsdale), 256-261
[123] Hashimoto, M.; Koreyeda, K.; Shimono, T.; Tanaka, H.; Kiyosawa, Y.; Hirabayashi, H., Experimental study on torque control using harmonic drive built-in torque sensors, (Proc. Inter. Conf. on Robotics and Automation (1992), IEEE: IEEE Nice), 2026-2031
[124] Heck, B. S.; Ferri, A. A., Model reduction of a Coulomb friction damped system using singular perturbation theory, (Proc. 1991 American Control Conference (1991), AACC: AACC Boston, MA), 539-541 · Zbl 0853.70015
[125] Held, V.; Maron, C., Estimation of friction characteristics, inertial and coupling coefficients in robotic joints based on current and speed measurements, (Robot Control 1988 (SYROCO ’88), Selected Papers from the 2nd IFAC Symposium. Robot Control 1988 (SYROCO ’88), Selected Papers from the 2nd IFAC Symposium, Karlsruhe, Germany (1988)), 207-212
[126] Henrichfreise, H., Fast elastic robots. Control of an elastic robot axis accounting for nonlinear drive properties, (Proc. 11th IMACS World Congress. Proc. 11th IMACS World Congress, Oslo (1985), IMACS: IMACS Oslo, Norway), 23-26
[127] Henrichfreise, H., Observed-based Coulomb friction torque compensation for a position control system, (Proc, PCIM’92 (1992), PCIM: PCIM Nurnberg, Germany)
[128] Hersey, M. D., The laws of lubrication of horizontal journal bearings, J. Wash. Acad. Sci., 4, 542-552 (1914)
[129] Hersey, M. D., Theory and Research in Lubrication (1966), John Wiley and Sons: John Wiley and Sons NY
[130] Hertz, H., On the contact of elastic solids, J. Reine und Anges. Math., 92, 156-171 (1881)
[131] Hess, D. P.; Soom, A., Friction at a lubricated line contact operating at oscillating sliding velocities, J. of Tribology, 112, 1, 147-152 (1990)
[132] Hess, D. P.; Soom, A., Normal vibrations and friction under harmonic loads: part I—Hertzian contacts, J. of Tribology, 113, 1, 80-86 (1991)
[133] Hess, D. P.; Soom, A., Normal vibrations and friction under harmonic loads: part II—rough planar contacts, J. of Tribology, 113, 1, 87-92 (1991)
[134] Himmell, L. C., Examination of adaptive control-based approaches to friction compensation in spacecraft gimbal control systems, (Proc. 24th Conf. on Decision and Control. Proc. 24th Conf. on Decision and Control, Ft. Lauderdale, FL (1985)), 642-646
[135] Hirel, P., Adaptive optics, dither optimization method in an adaptive optic model, (Proc. SPIE Inter. Soc. Opt. Eng. (1990), SPIE: SPIE Hague), 22-32
[136] Hojjat, Y.; Higuchi, T., Application of electromagnetic impulsive force to precise positioning, Int. J. Japan Soc. Precision Engineering, 25, 1, 39-44 (1991)
[137] Horikawa, O.; Yasuhara, K.; Osada, H.; Shimokohbe, A., Dynamic stiffness control of active air bearing, Int. J. Japan Soc. Precision Engineering, 25, 1, 45-50 (1991)
[138] Horowitz, I.; Oldak, S.; Shapiro, A., Extensions of dithered feedback systems, Inter. J. of Control, 54, 1, 83-109 (1991)
[139] Howard, S. W.; Kumar, V., A minimum principle for the dynamic analysis of systems with frictional contacts, (Proc. 1993 Inter. Conf. on Robotics and Automation (1993), IEEE: IEEE Atlanta), 437-442
[140] Howe, R. D.; Kao, I.; Cutkosky, M. R., The sliding of robot fingers under combined torsion and shear loading, (Proc. 1988 Inter. Conf. on Robotics and Automation (1988), IEEE: IEEE Phildelphia), 103-105
[141] Hsu, P.; Bodson, M.; Sastry, S.; Paden, B., Adaptive identification and control for manipulators without using joint accelerations, (Proc. Inter. Conf. on Robotics and Automation (1987), IEEE: IEEE Raleigh), 1201-1215
[142] Ibrahim, R. A., Friction-Induced vibration, chatter, squel, and chaos: part I—mechanics of friction, (Ibrahim, R. A.; Soom, A., Friction-Induced Vibration, Chatter, Squeal, and Chaos, Proc. ASME Winter Annual Meeting, Anaheim, DE-Vol. 49 (1992), ASME: ASME NY), 107-122
[143] Ibrahim, R. A., Friction-induced vibration, chatter, squeal, and chaos: part II—dynamics and modeling, (Ibrahim, R. A.; Soom, A., Friction-Induced Vibration, Chatter, Squeal, and Chaos, Proc. ASME Winter Annual Meeting, Anaheim, DE-Vol. 49 (1992), ASME: ASME NY), 123-138
[144] Johannes, V. I.; Green, M. A.; Brockley, C. A., The role of rate of application of the tangential force in determining the static friction coefficient, Wear, 24, 5, 384-385 (1973)
[145] Johnson, C. T.; Lorenz, R. D., Experimental identification of friction and its compensation in precise, position controlled mechanisms, (Proc. of the Indus. App. Soc. Annual Meeting. Proc. of the Indus. App. Soc. Annual Meeting, Dearborn, Michigan (1991)), 1400-1406
[146] Johnson, K. L., Tangential tractions and microslip, (Rolling Contact Phenomena (1962), Elsevier: Elsevier Amsterdam), 6-28
[147] Johnson, K. L., Contact Mechanics (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0599.73108
[148] Kao, I.; Cutkosky, M. R., Dextrous Manipulation with compliance and sliding, Int. J. Robotics Research, 11, 1, 20-40 (1992)
[149] Karlen, J. P.; Thompson, J. M.; Void, H. I.; Farrell, J. D.; Eismann, P. H., A dual-arm dexterous manipulator system with anthropomorphic kinematics, (Proc. 1990 Inter. Conf. on Robotics and Automation (1990), IEEE: IEEE Cincinnati), 368-373
[150] Karnopp, D., Computer simulation of stick-slip friction in mechanical dynamic systems, ASME J. of Dynamic Systems, Measurement and Control, 107, 1, 100-103 (1985)
[151] Kato, S.; Matsubayashi, T., On the dynamic behavior of machine tool slideway, Bulletin of the Japanese Soc. of Mechanical Engineers, 13, 55, 170-198 (1970)
[152] Kato, S.; Sato, N.; Matsubayashi, T., Some considerations of characteristics of static friction of machine tool slideway, J. of Lubrication Technology, 94, 3, 234-247 (1972)
[153] Kato, S.; Yamaguchi, K.; Matsubayashi, T., Stick slip motion of machine tool slideway, ASME J. of Engineering for Industry, 96, 2, 557-566 (1974)
[154] Khalil, H., Nonlinear Systems (1992), Macmillan: Macmillan NY · Zbl 0969.34001
[155] Khitrik, V. E.; Shmakov, V. A., Static and dynamic characteristics of friction pairs, Soviet J. of Friction and Wear, 8, 5, 112-115 (1987)
[156] Ko, P. L.; Brockley, C. A., The measurement of friction and friction-induced vibration, J. of Lubrication Technology, 92, 4, 543-549 (1970)
[157] Kosuge, K.; Takeuchi, H.; Furuta, K., Motion control of a robot arm using joint torque sensors, (Proc. 27th CDC (1988), IEEE: IEEE Austin, TX)
[158] Kragelskii, I. V., (Handbook of Friction Units of Machines (1988), ASME Press: ASME Press NY)
[159] Kubo, T.; Anwar, G.; Tomizuka, M., Application of nonlinear friction compensation to robot arm control, (Proc. 1986 Inter. Conf. of Robotics and Automation (1986), IEEE: IEEE San Francisco, CA), 722-727
[160] Kuc, T.-Y.; Nam, K.; Lee, J. S., An iterative learning control of robot manipulators, Trans. on Robotics and Automation, 7, 6, 835-842 (1991)
[161] Lee, S.; Meerkov, S. M., (Generalized dither, 37 (1991), IEEE Trans. on Information Theory), 50-56, 1
[162] Leonard, N. E.; Krishnaprasad, P. S., Adaptive friction compensation for bi-directional low-velocity tracking, (31st Conference on Decision and Control (1992), IEEE: IEEE Tucson), 267-273
[163] Linker, M. F.; Dieterich, J. H., Effects of variable normal stress on rock friction: observations and constitutive equations, J. of Geophysical Research, 97, B4, 4923-4940 (1992)
[164] Lötstedt, P., Coulomb friction in two-dimensional rigid body systems, Zeitschrift für Angewandte Mathematik un Mechanik, 61, 605-615 (1981) · Zbl 0495.73095
[165] Lubrizol, Inc., Product Data Sheet, 5346 (1988), Lubrizol
[166] Ludema, K. C., Engineering progress and cultural problems in tribology, Lubrication Engineering, 44, 6, 500-509 (1988)
[167] Luh, J. Y.S.; Fisher, W. D.; Paul, R. P.C., Joint torque control by a direct feedback for industrial robots, IEEE Trans. on Automatic Control, AC-28, 2, 153-161 (1983) · Zbl 0502.93057
[168] MacColl, L. A., Fundamental Theory of Servomechanisms (1945), Van Nostrand: Van Nostrand Princeton, NJ · Zbl 0061.19104
[169] Maron, J. C., Identification and adaptive control of mechanical systems with friction, (Selected Papers from the 3rd IFAC Symposium. Selected Papers from the 3rd IFAC Symposium, Glasgow, U.K.. Selected Papers from the 3rd IFAC Symposium. Selected Papers from the 3rd IFAC Symposium, Glasgow, U.K., Adaptive Systems in Control and Signal Processing (1989)), 325-330
[170] Maron, J. C., Nonlinear identification and observer based compensation of friction in mechanical systems, (Isidori, A., Nonlinear Control Systems Design (1989), Pergamon Press: Pergamon Press Oxford)
[171] Martins, J. A.C.; Oden, J. T.; Simões, F. M.F., A study of static and kinetic friction, Int. J. Engineering Science, 28, 1, 29-92 (1990) · Zbl 0729.73187
[172] Mason, M. T.; Wang, Y., On the inconsistency of rigid-body frictional planar mechanics, (Proc. 1988 IEEE Int. Conf. on Robotics and Automation (1988), IEEE: IEEE Philadelphia, PA), 524-528
[173] Maqueira, B.; Masten, M. K., Adaptive friction compensation for line-of-slight pointing and stabilization, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco, CA), 1942-1946
[174] Mees, I. A., Describing functions: ten years on. IMA, J. of Applied Mathematics, 32, 1-3, 221-233 (1984) · Zbl 0543.93029
[175] Merchant, M. E., Characteristics of typical polar and non-polar lubricant additives under stick-slip conditions, Lubrication Engineering, 2, 2, 56-61 (1946)
[176] Millman, G. (1990). Cincinnati Milacron, Private Communication.; Millman, G. (1990). Cincinnati Milacron, Private Communication.
[177] Mobil Oil Corporation, Gears and their lubrication, Technical Bulletin 1-92-003 (1971)
[178] Mobil Oil Corporation, Way lubrication—machine tools, Technical Bulletin 8-93-001 (1978)
[179] Moore, D. F., The Friction and Lubrication of Elastomers (1972), Elsevier Scientific: Elsevier Scientific NY
[180] Moore, D. F., The Friction of Pneumatic Tyres (1975), Elsevier Scientific: Elsevier Scientific NY
[181] Morgowicz, B., Techniques for real-time simulation of robot manipulators, (Ph.D. thesis (1988), Aerospace Engineering, Univ. of Michigan)
[182] Morin, A. J., New friction experiments carried out at Metz in 1831-1833, (Proc. of the French Royal Academy of Sciences, 4 (1833)), 1-128
[183] Mossaheb, S., Application of a method of averaging to the study of dithers in non-linear systems, Inter. J. of Control, 38, 3, 557-576 (1983) · Zbl 0522.93035
[184] Mukerjee, A.; Ballard, D. H., Self-calibration in robot manipulators, (Proc. 1985 Inter. Conf. on Robotics and Automation (1985), IEEE: IEEE St. Louis, MS), 1050-1057
[185] Newman, W. S.; Zhang, Y.; Anderson, W. J.; Shipitalo, W., Experimental evaluation of a new traction-drive robotic transmission, (Proc. IEEE Int. Conf. Robotics and Automation (1992), IEEE: IEEE Nice, France), 652-657
[186] Newton, I., Philosophiae Naturales Principia Mathematica, S. Pepys, Reg. Soc. Praeses (1678), 5 Julii, 1686
[187] O’Connor, L., Active magnetic bearings give systems a lift, Mechanical Engineering, 114, 7, 52-57 (1992)
[188] Oden, J. T.; Martins, J. A.C., Models and computational methods for dynamic friction phenomena, Comput. Meth. Appl. Mech. Eng., 52, 1-3, 527-634 (1985) · Zbl 0567.73122
[189] Okubo, P., Experimental and numerical model studies of frictional instability seismic sources, (Ph.D. Dissertation (1986), Department of Earth, Atmospheric and Planetary Sciences, MIT)
[190] Ostertag, E.; Bakri, N.; Becker, N., Functional distrubance observer for simultaneous control and dry friction compensation, (Proc. IFAC Advanced Indormation Processing in Automatic Control (1989), IFAC: IFAC Nancy, France), 421-426
[191] Painlevé, P., Sur les Lois du Frottement de Glissement, Comptes Rendus de l’Académie des Sciences, 121, 112-115 (1985)
[192] Palmgren, A., Ball and Roller Bearing Engineering (1945), S.H. Burbank: S.H. Burbank Philadelphia, PA
[193] Pan, P.; Hamrock, B. J., Simple formulas for performance parameters used in elastohydrodynamically lubricated line contacts, J. of Tribology, 111, 2, 246-251 (1989)
[194] Papay, A. G., EP gear oils today and tomorrow, Lubrication Engineering, 30, 9, 445-454 (1974)
[195] Papay, A. G., Industrial gear oils—state of the art, Lubrication Engineering, 44, 3, 218-229 (1988)
[196] Papay, A. G.; Dinsmore, D. W., Advances in gear additive technology, Lubrication Engineering, 32, 5, 229-234 (1976)
[197] Pavelescu, D.; Tudor, A., The sliding friction coefficient—its evolution and usefulness, Wear, 120, 3, 321-336 (1987)
[198] Peshkin, M. A.; Sanderson, A. C., Minimization of energy in quasistatic manipulation, (Proc. 1988 Inter. Conf. on Robotics and Automation (1988), IEEE: IEEE Philadelphia, PA), 421-425
[199] Pfeffer, L.; Khatib, O.; Hake, J., Joint torque sensory feedback in the control of a PUMA manipulator, (Proc. 1986 American Control Conference (1986), AACC: AACC Seattle, WA)
[200] Pfeffer, L.; Khatib, O.; Hake, J., Joint torque sensory feedback in the control of a PUMA manipulator, IEEE Trans. on Robotics and Automation, 5, 4, 418-425 (1989)
[201] Polycarpou, A.; Soom, A., Transitions between sticking and slipping, (Ibrahim, R. A.; Soom, A., Friction-Induced Vibration, Chatter, Squeal, and Chaos, Proc. ASME Winter Annual Meeting, Anaheim, DE-Vol. 49 (1992), ASME: ASME NY), 139-148
[202] Pope, L. E.; Fehrenbacher, L. L.; Winer, W. O., New Materials Approaches to Tribology: Theory and Applications (1989), Materials Research Society: Materials Research Society Pittsburgh, PA
[203] Popp, K.; Stelter, P., Stick-slip vibrations and chaos, Phil. Trans., R. Soc. London series A, 332, 1, 89-105 (1990) · Zbl 0709.70019
[204] Rabinowicz, E., The nature of the static and kinetic coefficients of friction, J. of Applied Physics, 22, 11, 1373-1379 (1951)
[205] Rabinowicz, E., Autocorrelation analysis of the sliding process, J. of Applied Physics, 27, 2, 131-135 (1956)
[206] Rabinowicz, E., Stick and slip, Scientific American, 194, 5, 109-118 (1956)
[207] Rabinowicz, E., The intrinsic variables affecting the stick-slip process, (Proc. Physical Society of London, 71 (1958)), 668-675, 4
[208] Rabinowicz, E., A study of the stick-slip process, (Davies, R., Friction and Wear (1959), Elsevier: Elsevier NY)
[209] Rabinowicz, E., Friction and Wear of Materials (1965), John Wiley and Sons: John Wiley and Sons NY
[210] Rabinowicz, E., Friction, especially low friction, (Suh, N. P.; Saka, N., Int. Conference on Fundamentals of Tribology (1978), MIT Press: MIT Press Cambridge), 351-365, (1978: MIT)
[211] Rabinowicz, E.; Rightmire, B. G.; Tedholm, C. E.; Williams, R. E., The statistical nature of friction, Trans. of the ASME, 22, 981-984 (1955)
[212] Rabinowicz, E.; Tabor, D., Metallic transfer between sliding metals: an autoradiographic study, (Proc. of the Royal Soc. of London, Series A, 208 (1951)), 455-475, (Series A)
[213] Radcliffe, C. J.; Southward, S. C., A property of stick-slip friction models which promotes limit cycle generation, (Proc. 1990 American Control Conference (1990), ACC: ACC San Diego, CA), 1198-1203
[214] Rajan, V. T.; Burridge, R.; Schwartz, J. T., Dynamics of a rigid body in frictional contact with rigid walls: motion in two dimensions, (Proc. 1987 IEEE Int. Conf. on Robotics and Automation (1987), IEEE: IEEE New York), 671-677
[215] Rattan, K. S.; Chiu, B.; Feliu, V.; Brown, H. B., Rule-based fuzzy control of a single-link flexible manipulator in the presence of joint friction and load changes, (Proc. 1989 American Control Conference (1989), AACC: AACC Pittsburgh, PA), 2749-2750
[216] Rayiko, M. V.; Dmytrychenko, N. F., Some aspects of boundary lubrication in the local contact of friction surfaces, Wear, 126, 1, 69-78 (1988)
[217] Reynolds, O., On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil, Phil. Trans. Royal Soc., 177, 157-234 (1886)
[218] Rice, J. R.; Ruina, A. L., Stability of steady frictional slipping, J. of Applied Mechanics, 50, 343-349 (1983) · Zbl 0554.73095
[219] Richardson, R. S.H.; Nolle, H., Surface friction under time-dependent loads, Wear, 37, 87-101 (1976)
[220] Ro, P. I.; Hubbel, P. I., Model reference adaptive control of dual-mode micro/macro dynamics of ball screws for nanometer motion, ASME J. of Dynamics Systems, Measurement and Control, 113, 103-108 (1993), (March)
[221] Rooney, G. T.; Deravi, P., Coulomb friction in mechanism sliding joints, Mechanism and Machine Theory, 17, 3, 207-211 (1982)
[222] Ruina, A., Friction laws and instabilities: a quasistatic analysis of some dry frictional behavior, (Ph.D. Dissertation (1980), Division of Engineering, Brown University)
[223] Ruina, A.; Katzman, Y.; Conrad, G.; Horowitz, F., Some theory and experiments related to frictional behavior of rocks at low normal stress (1986), Unpublished manuscript
[224] Sadeghi, F.; Sui, P. C., Compressible elastohydrodynamic lubrication of rough surfaces, J. of Tribology, 111, 1, 56-62 (1989)
[225] Salisburty, J. K.; Townsend, W. T.; Eberman, B. S.; DiPietro, D. M., Preliminary design of a whole-arm manipulation system (WAMS), (Proc. of the 1988 Int. Conf. on Robotics and Automation (1988), IEEE: IEEE Philadelphia), 254-260
[226] Sampson, J. B.; Morgan, F.; Reed, D. W.; Muskat, M., Friction behavior during the slip portion of the stick-slip process, J. Applied Physics, 14, 12, 689-700 (1943)
[227] Satyendra, K. N., Describing functions representing the effect of inertia, backlash and Coulomb friction on the stability of an automatic control system, AIEE Transactions, 75, II, 243-249 (1956)
[228] Schäfer, U.; Brandenburg, G., Compensation of Coulomb friction in industrial elastic two-mass systems through model reference adaptive control, (Proc. 3rd European Conf. on Power Electronics and Applications (1989), EPE: EPE Aachen, Germany), 1409-1415
[229] Schäfer, U.; Brandenburg, G., Model reference position control of an elastic two-mass system with backlash and Coulomb friction using different types of observers, (Power Electronics and Motion Control, vol. 3 (1990), PEMC: PEMC Budapest), 797-801
[230] Schäfer, U.; Brandenburg, G., Model reference position control of an elastic two-mass system with compensation of Coulomb friction, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco, CA), 1937-1941
[231] Schallamach, A., How Does Rubber Slide?, Wear, 17, 4, 301-312 (1971)
[232] Schimmels, J. M.; Peshkin, M. A., The space of admittance control laws that guarantees force-assembly with friction, (Proc. 1993 Inter. Conf. on Robotics and Automation (1993), IEEE: IEEE Atlanta), 443-448
[233] Shen, C. N., Synthesis of high order nonlinear control systems with ramp input, IRE Trans. on Automatic Control, AC-7, 2, 22-37 (1962)
[234] Shen, C. N.; Wang, H., Nonlinear compensation of a second- and third-order system with dry frictio, IEEE Trans. on Applications and Industry, 83, 71, 128-136 (1964)
[235] Silverberg, M. Y., A note on the describing function of an element with Coulomb, static and viscous friction, AIEE Trans., 75, II, 423-425 (1957)
[236] Singh, B. R., Study of critical velocity of stick-slip sliding, J. of Engineering for Industry, 393-398 (1960)
[237] Singh, S. K., Modified PID control with stiction: periodic orbits, bifurcation and chaos, (Report CAR-90-04 (1990), Dept. of Mechanical Engineering, Dartmouth University)
[238] Slotine, J.-J. E., Sliding controller of robot manipulators, Int. J. Control, 40, 2, 421-434 (1984) · Zbl 0541.93034
[239] Slotine, J.-J. E.; Li, W., On the adaptive control of robot manipulators, Int. J. Robotics Res., 6, 3, 49-59 (1987)
[240] Slotine, J.-J. E.; Li, W., Compomsite adaptive control of robot manipulators, Automatica, 25, 4, 509-520 (1989) · Zbl 0696.93045
[241] Slotine, J.-J. E.; Li, W., Applied Nonlinear Control (1991), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0753.93036
[242] Smith, G. T., (Advanced Machining: The Handbook of Cutting Technology (1989), IFS, Springer Verlag: IFS, Springer Verlag NY)
[243] Sommerfeld, A., Zur Hydrodynamischen Theorie der Schmiermittehreibung, Zeitschrift Fur Mathematic und Physik, 50, 97-155 (1904), 1904
[244] Soom, A. (1992). Private correspondence.; Soom, A. (1992). Private correspondence.
[245] Southward, S. C.; Radcliffe, C. J.; MacCluer, C. R., Robust nonlinear stick-slip friction compensation, ASME J. of Dynamic Systems, Measurement and Control, 113, 4, 639-645 (1991) · Zbl 0745.93064
[246] Sroda, P., Analysis of the shape of the contact geometry during meshing of involute gears, Wear, 121, 2, 183-196 (1988)
[247] Stockum, L.; Profeta, J.; Ballou, L., Precision stabilization system design to reduce the effects of friction, (Proc. SPIE Vol. 887 Acquisition, Tracking and Pointing II (1988), SPIE), 159-167
[248] Stribeck, R., Die Wesentlichen Eigenschaften der Gleit- und Rollenlager—the key qualities of sliding and roller bearings, Zeitschrift des Vereines Seutscher Ingenieure, 46, 39, 1432-1437 (1902)
[249] Suh, N. P.; Sin, H. C., The genesis of friction, Wear, 69, 1, 91-114 (1981)
[250] Suzuki, A.; Tomizuka, M., Design and implementation of digital servo controller for high speed machine tools, (Proc. 1991 American Control Conference (1991), AACC: AACC Boston, WA), 1246-1251
[251] Thomas, S., Vibrations damped by solid friction, Philosophical Magazine, 7, 9, 329-345 (1930)
[252] Threlfall, D. C., The inclusion of Coulomb friction in mechanisms programs with particular reference to DRAM, Mechanism and Machine Theory, 13, 4, 475-483 (1978)
[253] Tolstoi, D. M., Significance of the normal degree of freedom and natural normal vibrations in contact friction, Wear, 10, 3, 199-213 (1967)
[254] Tomizuka, M.; Horowitz, R.; Anwar, G.; Jia, Y. L., Implementation of adaptive techniques for motion control of robotic manipulators, ASME J. of Dynamic Systems, Measurement and Control, 110, 1, 62-69 (1988) · Zbl 0648.93036
[255] Tou, J., Coulomb and static friction in servo-mechanisms, (Ph.D. Thesis (1953), Electrical Engineering Dept., Yale University)
[256] Tou, J.; Schultheiss, P. M., Static and sliding friction in feedback systems, J. of Applied Physics, 24, 9, 1210-1217 (1953) · Zbl 0052.41106
[257] Townsend, W. T., The effect of transmission design on the performance of force-controlled manipulators, (Ph.D. Thesis (1988), Mechanical Engineering Dept., Massachusetts Institute of Technology: Mechanical Engineering Dept., Massachusetts Institute of Technology MA)
[258] Townsend, W. T.; Salisbury, J. K., The effect of Coulomb friction and sticktion on force control, (Proc. 1987 Inter. Conf. on Robotics and Automation (1987), IEEE: IEEE Raleigh), 883-889
[259] Trinkle, J. C., A quasi-static analysis of dextrous manipulation with sliding and rolling contacts, (Proc. Inter. Conf. on Robotics and Automation (1989), IEEE: IEEE Scottsdale), 788-793
[260] Tung, E. D.; Urushisaki, Y.; Tomizuka, M., Low velocity friction compensation for machine tool feed drives, (Proc. 1993 American Control Conference (1993), AACC: AACC San Francisco, CA), 1932-1936
[261] Tudor, A.; Bo, L. C., The squeeze film under boundary lubrication conditions and its effect on the vertical displacement of sliding bodies, Wear, 80, 1, 115-119 (1982)
[262] Tustin, A., The effects of backlash and of speed-dependent friction on the stability of closed-cycle control systems, IEE Journal, 94, 2A, 143-151 (1947)
[263] Utkin, V. I., Variable structure systems with sliding mode: a survey, IEEE Trans. on Automatic Control, 22, 2, 212-222 (1977) · Zbl 0382.93036
[264] Vidyasagar, M., Nonlinear System Analysis (1991), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ
[265] Villanueva-Leal, A.; Hinduja, S., Modeling the characteristics of interface surfaces by the finite element method, (Proc. of the Instn. of Mechanical Engineers, 198C (1984)), 9-23, 4
[266] Vinogradov, G. V.; Korepova, I. V.; Podolsky, Y. Y., Steel-to-steel friction over a very wide range of sliding speeds, Wear, 10, 5, 338-352 (1967)
[267] Vischer, D.; Khatib, O., Design and development of torque-controlled joints, (Hayward, V.; Khatib, O., Experimental Robotics I (1990), Springer-Verlag: Springer-Verlag Heidelberg), 271-286
[268] Vischer, D.; Khatib, O., Performance evaluation for force/torque feedback control methodologies, (Proc. Romansy ’90 (1990), Cracow: Cracow Poland)
[269] Wallenborg, A.; Åström, K. J., Limit cycle oscillations in high performance robot drives, (Proc. IEE International Conference CONTROL 88 (1988), IEE), 444-449
[270] Walrath, C. D., Adaptive bearing friction compensation based on recent knowledge of dynamic friction, Automatica, 20, 6, 717-727 (1984) · Zbl 0554.93041
[271] Wang, Y.; Kumar, V.; Abel, J., Dynamics of rigid bodies undergoing multiple friction contacts, (Proc. IEEE Int. Conf. Robotics and Automation (1992), IEEE: IEEE Nice, France), 2764-2769
[272] Wellauer, E. J.; Holloway, G. A., Application of EHD oil film theory to industrial gear drives, J. of Engineering for Industry, 98B, 1, 626-634 (1976)
[273] Widrow, B.; Stearns, S. D., Adaptive Signal Processing (1985), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0593.93063
[274] Wills, G. J., Lubrication Fundamentals (1980), Marcel Dekker: Marcel Dekker NY
[275] Wilson, A. R., The relative thickness of grease and oil films in rolling bearings, (Proc. of the Instn. of Mechanical Engineers, 193 (1979)), 185-192, 17
[276] Wolf, G. J., Stick-slip and machine tools, Lubrication Engineering, 21, 7, 273-275 (1965)
[277] Woodward, J. L., Describing functions for nonlinear friction in relay servos, Trans. on Automatic Control, AC-8, 260-262 (1963)
[278] Wu, C. H.; Paul, R. P., Manipulator compliance based on joint torque control, (19th Conference on Decision and Control (1980), IEEE: IEEE Albuquerque, NM), 89-94
[279] Xiaolan, A.; Haiqing, Y., A full numerical solutions for general transient elastohydrodynamic line contacts and its application, Wear, 121, 2, 143-159 (1987)
[280] Yang, S.; Tomizuka, M., Adaptive pulse width control for precise positioning under the influence of stiction and Coulomb friction, ASME J. od Dynamic Systems, Measurement and Control, 110, 3, 221-227 (1988)
[281] Younkin, G. W., Modeling machine tool feed servo drives using simulation techniques to predict performance, IEEE Trans. on Industry Applications, 27, 2, 268-274 (1991)
[282] Zames, G.; Shneydor, N. A., Dither in nonlinear systems, IEEE Trans. on Automatic Control, AC-21, 5, 660-667 (1976) · Zbl 0337.93009
[283] Zames, G.; Shneydor, N. A., Structural stabilization and quenching by dither in nonlinear systems, IEEE Trans. on Automatic Control, AC-22, 3, 352-361 (1977) · Zbl 0356.93022
[284] Zhu, D.; Cheng, H. S., Effect of surface roughness on point contact EHL, J. of Tribology, 110, 1, 32-37 (1988)
[285] Zmitrowicz, A., A theoretical model of anisotropic dry friction, Wear, 73, 1, 9-39 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.