Godbout, Louis F. jun.; Jordan, David; Striefler, Manfred E. Pole placement algorithms for multirate-sampled linear systems. (English) Zbl 0800.93443 Automatica 30, No. 4, 723-727 (1994). MSC: 93B55 Pole and zero placement problems 93C05 Linear systems in control theory PDF BibTeX XML Cite \textit{L. F. Godbout jun.} et al., Automatica 30, No. 4, 723--727 (1994; Zbl 0800.93443) Full Text: DOI References: [1] Apostolakis, I. S.; Jordan, D., A time-invariant approach to multirate optimal regulator design, Int. J. of Control, 53, 1233-1254 (1991) [2] Araki, M.; Yamamoto, K., Multivariable multirate sampled-data systems: state-space description, transfer characteristics, and Nyquist criterion, IEEE Trans. on Automatic Control, 31, 145-154 (1986) [3] Berg, M. C.; Amit, N.; Powell, J. D., Multirate digital control system design, IEEE Trans. on Automatic Control, 33, 1139-1150 (1988) · Zbl 0711.93041 [4] Brogan, W. L., (Modern Control Theory (1985), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) · Zbl 0624.93001 [5] Cochin, I.; Plass, H. J., (Analysis and Design of Dynamic Systems (1990), Harper and Row: Harper and Row New York) · Zbl 0744.93003 [6] Dennis, J. E., (Nonlinear Least Squares (1977), Academic Press: Academic Press New York) [7] Godbout, L. F.; Jordan, D.; Apostolakis, I. S., A closed-loop model for general multirate digital control systems, (IEE Proceedings-D: Control Theory and Applications, 137 (1990)), 329-336 · Zbl 0739.93055 [8] Hagiwara, T.; Araki, M., Design of a stable state feedback controller based on the multirate sampling of the plant output, IEEE Trans. on Automatic Control, 33, 812-819 (1988) · Zbl 0648.93043 [9] Ogata, K., (Discrete-Time Control Systems (1987), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) [10] Phillips, C. L.; Nagle, H. T., (Digital Control System Analysis and Design (1984), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.