de Does, Jesse; Schumacher, J. M. Interpretations of the gap topology: A survey. (English) Zbl 0800.93740 Kybernetika 30, No. 2, 105-120 (1994). Cited in 3 Documents MSC: 93C99 Model systems in control theory Keywords:time-invariant × Cite Format Result Cite Review PDF Full Text: EuDML Link References: [1] E. Berkson: Some metrics on the subspaces of a Banach space. Pacific J. Math. 13 (1963), 7-22. · Zbl 0118.10402 · doi:10.2140/pjm.1963.13.7 [2] C. I. Byrnes, T. E. Duncan: On certain topological invariants arising in system theory. New Directions in Applied Mathematics, Springer, New York 1982, pp. 29-71. · Zbl 0483.93049 [3] J. de Does H. Glüsing-Lüerssen, J. M. Schumacher: Connectedness properties of spaces of linear systems. Proc. SINS ’92 International Symposium on Implicit and Nonlinear Systems (Ft. Worth, Texas, Dec. 14-15, 1992), (F. L. Lewis, ARRI, Univ. Texas at Arlington, pp. 210-215. [4] I. C. Gohberg, M. G. Krein: Introduction to the Theory of Linear Nonselfadjoint Operators. Transl. Math. Monogr. 18, Amer. Math. Soc, Providence, RI 1969. · Zbl 0181.13503 [5] C. Foias T. T. Georgiou, M. C. Smith: Robust stabilization in the gap metric: a geometric approach. Proc. 1991 International Symposium on the Mathematical Theory of Networks and Systems, Kobe, Japan, June 1991. [6] C. Martin, R. Hermann: Applications of algebraic geometry to systems theory: The McMillan degree and Kronecker indices of transfer functions as topological and holomorphic system invariants. SIAM J. Control Optim. 16 (1978), 743-755. · Zbl 0401.93020 · doi:10.1137/0316050 [7] T. Kato: Perturbation Theory for Linear Operators. Springer, New York 1982. · Zbl 0493.47008 [8] P. D. Lax: [9] N. K. Nikol’skiĭ: Treatise on the Shift Operator. Springer, Berlin 1986. [10] R. J. Ober, J. A. Sefton: Stability of control systems and graphs of linear systems. Systems Control Lett. 17 (1991), 265-280. · Zbl 0747.93062 · doi:10.1016/0167-6911(91)90142-2 [11] L. Qiu, E. J. Davison: Pointwise gap metrics on transfer matrices. IEEE Trans. Automat. Control 37 (1992), 741-758. · Zbl 0755.93067 · doi:10.1109/9.256329 [12] L. Qiu, E. J. Davison: Feedback stability under simultaneous gap metric uncertainties in plant and controller. Systems Control Lett. 18 (1992), 9-22. · Zbl 0743.93083 · doi:10.1016/0167-6911(92)90103-Y [13] J. M. Schumacher: A pointwise criterion for controller robustness. Systems Control Lett. 18 (1992), 1-8. · Zbl 0743.93080 · doi:10.1016/0167-6911(92)90102-X [14] M. Vidyasagar: Control System Synthesis: a Factorization Approach. MIT Press, Cambridge, MA 1985. · Zbl 0655.93001 [15] S. Weiland: Theory of Approximation and Disturbance Attenuation for Linear Systems. Doctoral Dissertation, University of Groningen 1991. [16] J. C. Willems: Input-output and state-space representations of finite-dimensional linear time-invariant systems. Linear Algebra Appl. 50 (1983), 581-608. · Zbl 0507.93017 · doi:10.1016/0024-3795(83)90070-8 [17] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems. IEEE Trans. Automat. Control 36 (1991), 259-294. · Zbl 0737.93004 · doi:10.1109/9.73561 [18] G. Zames, A. K. El-Sakkary: Unstable systems and feedback: The gap metric. Proc. Allerton Conf. (1980), pp. 380-385. [19] S. Q. Zhu: Graph topology and gap topology for unstable systems. IEEE Trans. Automat. Control 34 (1989), 848-855. · Zbl 0697.93030 · doi:10.1109/9.29426 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.