zbMATH — the first resource for mathematics

\(p\)-adic periods. (Périodes \(p\)-adiques. Séminaire du Bures-sur-Yvette, France, 1988.) (French) Zbl 0802.00019
Astérisque. 223. Paris: Société Mathematique de France, 397 p. (1994).

Show indexed articles as search result.

The articles of this volume will be reviewed individually.
Indexed articles:
Illusie, Luc, On the local monodromy theorem, 9-57 [Zbl 0837.14013]
Fontaine, Jean-Marc, The field of \(p\)-adic periods. With an appendix by Pierre Colmez: The algebraic numbers are dense in \(B_{dR}^+\), 59-111, Appendix 103-111 [Zbl 0940.14012]
Fontaine, Jean-Marc, \(p\)-adic semi-stable representations, 113-184 [Zbl 0865.14009]
Perrin-Riou, Bernadette, Ordinary \(p\)-adic representations. With an appendix by Luc Illusie: Ordinary semi-stable reduction, \(p\)-adic étale cohomology and de Rham cohomology after Bloch-Kato and Hyodo, 185-220; Appendix 209-220 [Zbl 1043.11532]
Hyodo, Osamu; Kato, Kazuya, Exposé V: Semi-stable reduction and crystalline cohomology with logarithmic poles, 221-268 [Zbl 0852.14004]
Kato, Kazuya, Exposé VI: Semi-stable reduction and \(p\)-adic étale cohomology, 269-293 [Zbl 0847.14009]
Raynaud, Michel, 1-motives and geometric monodromy, 295-319 [Zbl 0830.14001]
Fontaine, Jean-Marc, Potentially semi-stable \(\ell\)-adic representations, 321-347 [Zbl 0873.14020]
Wintenberger, Jean-Pierre, \(p\)-adic comparison theorem for abelian schemes. I: Construction of period pairings, 349-397 [Zbl 0839.14038]

00B25 Proceedings of conferences of miscellaneous specific interest
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
11-06 Proceedings, conferences, collections, etc. pertaining to number theory
Full Text: Link