# zbMATH — the first resource for mathematics

Algebraic independence by Mahler’s method and $$S$$-unit equations. (English) Zbl 0802.11029
The algebraic independence of Mahler functions and the algebraic independence of their values at suitable algebraic points is discussed. As an example of the results established here we state the following proposition from the text: Let $$f_ r(z)= \sum_{h=0}^ \infty z^{r^ h}$$ and $$g_ r(z)= \prod_{h=0}^ \infty (1- z^{r^ h})$$, $$r\geq 2$$. Let $$\{\omega_ i\}_{i\geq 1}$$ be a set of real quadratic irrational numbers such that $$\mathbb{Q} (\omega_ i) \neq \mathbb{Q} (\omega_ j)$$ if $$i\neq j$$ and put $$F_{\omega_ i} (z)= \sum_{h=1}^ \infty [h\omega_ i] z^ h$$. Then for any algebraic number $$\alpha$$ with $$0< |\alpha |<1$$, $f_ r(\alpha) \quad (r\geq 2), \qquad g_ r(\alpha)\quad (r\geq 2), \qquad F_{\omega_ i} (\alpha) \quad (i\geq 1)$ are algebraically independent.
The paper also deals with the case of Mahler functions of several variables. Earlier similar results have been claimed to be true, but their proofs were not completely clear. The correct and clear proof given in the text relies on a clever application of results on the $$S$$-unit equation.

##### MSC:
 11J86 Linear forms in logarithms; Baker’s method 11D99 Diophantine equations
Full Text:
##### References:
 [1] M. Amou : Algebraic independence of the values of certain functions at a transcendental number . Acta Arith. 59 (1991) 71-82. · Zbl 0735.11031 · eudml:206365 [2] P.-G. Becker : Effective measures for algebraic independence of the values of Mahler type functions . To appear in Acta Arith. · Zbl 0735.11030 · eudml:206352 [3] J.-H. Evertse : On sums of S-units and linear recurrences , Compositio Math. 53 (1984)225 -244. · Zbl 0547.10008 · numdam:CM_1984__53_2_225_0 · eudml:89685 [4] F.R. Gantmacher : Applications of the Theory of Matrices . New York, Wiley, 1959. · Zbl 0085.01001 [5] K.K. Kubota : On the algebraic independence of holomorphic solutions of certain functional equations and their values . Math. Ann. 227 (1977) 9-50. · Zbl 0359.10030 · doi:10.1007/BF01360961 · eudml:162963 [6] J.H. Loxton and A.J. Van Der Poorten : Arithmetic properties of certain functions in several variables . J. Number Theory 9 (1977) 87-106. · Zbl 0339.10026 · doi:10.1016/0022-314X(77)90053-1 [7] J.H. Loxton and A.J. Van Der Poorten : Arithmetic properties of certain functions in several variables. II . J. Austral. Math. Soc. Ser. A 24 (1977) 393-408. · Zbl 0339.10027 [8] J.H. Loxton and A.J. Van Der Poorten : A class of hypertranscendental functions . Aequationes Math. 16 (1977) 93-106. · Zbl 0384.10014 · doi:10.1007/BF01836423 · eudml:136679 [9] J.H. Loxton and A.J. Van Der Poorten : Algebraic independence properties of the Fredholm series . J. Austral. Math. Soc. Ser. A 26 (1978) 31-45. · Zbl 0392.10034 [10] J.H. Loxton and A.J. Van Der Poorten : Arithmetic properties of automata; regular sequences . J. reine angew. Math. 392 (1988) 57-69. · Zbl 0656.10033 · crelle:GDZPPN002206072 · eudml:153081 [11] K. Mahler : Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen . Math. Ann. 101 (1929) 342-366. · JFM 55.0115.01 [12] K. Mahler : Über das Verschwinden von Potenzreihen mehrerer Veränderlichen in speziellen Punktfolgen . Math. Ann. 103 (1930) 573-587. · JFM 56.0185.03 [13] K. Mahler : Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen . Math. Z. 32 (1930) 545-585. · JFM 56.0186.01 [14] D.W. Masser : A vanishing theorem for power series . Invent. Math. 67 (1982) 275-296. · Zbl 0481.10034 · doi:10.1007/BF01393819 · eudml:142913 [15] Yu. V. Nesterenko : On a measure of the algebraic independence of the values of certain functions . Mat. Sb. 128 (170) (1985); English transl. in Math. USSR Sb. 56 (1987) 545-567. · Zbl 0608.10034 · doi:10.1070/SM1987v056n02ABEH003051 [16] K. Nishioka : New approach in Mahler’s method . J. reine angew. Math. 407 (1990) 202-219. · Zbl 0694.10035 · doi:10.1515/crll.1990.407.202 · crelle:GDZPPN00220763X · eudml:153236 [17] K. Nishioka : On an estimate for the orders of zeros of Mahler type functions . Acta Arith. 56 (1990) 249-256. · Zbl 0719.11041 · eudml:206312 [18] K. Nishioka : Algebraic independence measures of the values of Mahler functions . J. reine angew. Math. 420 (1991) 203-214. · Zbl 0736.11034 · doi:10.1515/crll.1991.420.203 · crelle:GDZPPN00220889X · eudml:153359 [19] K. Nishioka , Y. Shiokawa and J. Tamura : Arithmetic properties of a certain power series . J. Number Theory 42 (1992) 61-87. · Zbl 0770.11039 · doi:10.1016/0022-314X(92)90109-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.