×

zbMATH — the first resource for mathematics

Hardy spaces on some pseudoconvex domains. (English) Zbl 0802.32012
We consider Hardy spaces \({\mathcal H}^ p\), \(p\leq 1\), of holomorphic functions in the interior of \(\Omega\), where \(\Omega\) is either a strongly pseudoconvex domain in \(\mathbb{C}^ n\) or a weakly pseudoconvex domain of finite type in \(\mathbb{C}^ 2\). We exhibit an atomic decomposition for the boundary values of these functions (in the sense of distributions), thus showing they belong to the local real Hardy spaces \({\mathcal H}^ p(\partial\Omega)\).

MSC:
32A35 \(H^p\)-spaces, Nevanlinna spaces of functions in several complex variables
32T99 Pseudoconvex domains
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Boggess, A., Dwilewicz, R., and Nagel, A. The hull of holomorphy of a nonisotropic ball in a real hypersurface of finite type.Trans. Amer. Math. Soc. 323, 209–231 (1991). · Zbl 0734.32007 · doi:10.1090/S0002-9947-1991-1079050-X
[2] Calderón, A. P. An atomic decomposition of distributions in parabolicH p spaces.Adv. in Math. 25, 216–225 (1977). · Zbl 0379.46050 · doi:10.1016/0001-8708(77)90074-3
[3] Catlin, D. W. Estimates of invariant metrics on pseudoconvex domains of dimension two.Math. Zeit. 200, 429–466 (1989). · Zbl 0661.32030 · doi:10.1007/BF01215657
[4] Coifman, R. R., and Weiss, G.Analyse Harmonique Non-commutative sur Certain Espaces Homogenes.Lect. Notes in Math. 242. Springer-Verlag, Berlin, 1971. · Zbl 0224.43006
[5] Dafni, G. 1993. Hardy spaces on strongly pseudoconvex domains in C n and domains of finite type in C2. Ph.D. Thesis, Princeton University, 1993.
[6] David, G., Journé, J. L., and Semmes, S. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation.Rev. Mat. Iberoam. 1, 1–56 (1985). · Zbl 0604.42014 · doi:10.4171/RMI/17
[7] Folland, G. B., and Stein, E. M. Estimates for the \(\bar \partial _b \) complex and analysis on the Heisenberg group.Comm. Pure and Appl. Math. 27, 429–522 (1974). · Zbl 0293.35012 · doi:10.1002/cpa.3160270403
[8] Garcia-Cuerva, J., and Rubio de Francia, J. L.Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam, 1985. · Zbl 0578.46046
[9] Garnett, J. B., and Latter, R. H. The atomic decomposition for Hardy spaces in several comples variables.Duke Math. J. 45, 815–845 (1978). · Zbl 0403.32006 · doi:10.1215/S0012-7094-78-04539-8
[10] Goldberg, D. A local version of real Hardy spaces.Duke Math. J. 46, 27–42 (1979). · Zbl 0409.46060 · doi:10.1215/S0012-7094-79-04603-9
[11] Krantz, S. G., and Li, S.-Y. A note on Hardy spaces and functions of bounded mean oscillation on domains in C n . Preprint. · Zbl 0802.32013
[12] Krantz, S. G., and Li, S.-Y. On the decomposition theorems for Hardy spaces in domains in C n and applications. Preprint. · Zbl 0886.32003
[13] Macias, R. A., and Segovia, C. A decomposition in atoms of distributions on spaces of homogeneous type.Advances in Math. 33, 271–309 (1979) · Zbl 0431.46019 · doi:10.1016/0001-8708(79)90013-6
[14] McNeal, J. D. Boundary behavior of the Bergman kernel function in C2.Duke Math. J. 58, 499–512 (1989). · Zbl 0675.32020 · doi:10.1215/S0012-7094-89-05822-5
[15] Nagel, A., Stein, E. M., and Wainger, S. Boundary behavior of functions holomorphic in domains of finite type.Proc. Natl. Acad. Sci. U.S.A. 78, 6596–6599 (1981). · Zbl 0517.32002 · doi:10.1073/pnas.78.11.6596
[16] Nagel, A., Stein, E. M., and Wainger, S. Balls and metrics defined by vector fields I: Basic properties.Acta Math. 155, 103–147 (1985). · Zbl 0578.32044 · doi:10.1007/BF02392539
[17] Nagel, A., Rosay, J. P., Stein, E. M., and Wainger, S. Estimates for the Bergman and Szegö kernels in C2.Ann. of Math. 129, 113–149 (1989). · Zbl 0667.32016 · doi:10.2307/1971487
[18] Stein, E. M.Boundary Behavior of Holomorphic functions of Several Complex Variables. Princeton University Press, Princeton, NJ, 1972. · Zbl 0242.32005
[19] Wilson, J. M. On the atomic decomposition for Hardy spaces.Pacific J. of Math. 116, 201–207 (1985). · Zbl 0563.42012 · doi:10.2140/pjm.1985.116.201
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.